Tractability in Structured Probability Spaces

Kushagra Chandak

Paper by: Arthur Choi, Yujia Shen, Adnan Darwiche (UCLA)

9th July, 2020

To represent Pr(X) where Pr(x) = 0 for many x. (Structured Space)

To represent Pr(X) where Pr(x) = 0 for many x. (Structured Space)

 First step in construction: Construct a Boolean circuit (SDD) that captures the zero entries of the distribution.

- To represent Pr(X) where Pr(x) = 0 for many x. (Structured Space)
- First step in construction: Construct a Boolean circuit (SDD) that captures the zero entries of the distribution.
- Second step: Parameterize SDD, which induces a local distribution on the inputs of OR gates.

- To represent Pr(X) where Pr(x) = 0 for many x. (Structured Space)
- First step in construction: Construct a Boolean circuit (SDD) that captures the zero entries of the distribution.
- Second step: Parameterize SDD, which induces a local distribution on the inputs of OR gates.
- ► The probability of a complete instantiation x: Perform a bottom-up pass. Value of AND gate is product of its inputs. Value of OR gate is weighted sum of its inputs. Also, ∑_x Pr(x) = 1

The setting: For an undirected graph G, X is a set of binary variables which correspond to edges in G. Instantiation x includes edge e iff the edge variable is set to true in x.

- The setting: For an undirected graph G, X is a set of binary variables which correspond to edges in G. Instantiation x includes edge e iff the edge variable is set to true in x.
- $\alpha_G = \mathbf{x_1} \lor \mathbf{x_2} \dots$, where $\mathbf{x_i}$ correspond to routes in *G*. $Pr(\mathbf{X})$: route distribution iff $Pr(\mathbf{x}) = 0$ if $\mathbf{x} \not\models \alpha_G$

- ► The setting: For an undirected graph G, X is a set of binary variables which correspond to edges in G. Instantiation x includes edge e iff the edge variable is set to true in x.
- $\alpha_G = \mathbf{x_1} \lor \mathbf{x_2} \dots$, where $\mathbf{x_i}$ correspond to routes in *G*. $Pr(\mathbf{X})$: route distribution iff $Pr(\mathbf{x}) = 0$ if $\mathbf{x} \not\models \alpha_G$
- Simple Routes: No-loop paths in G. β_G = x₁ ∨ x₂..., where x_i correspond to *simple routes* in G. Then, β_G ⊨ α_G
 Simple-route distribution: Pr(x) = 0 if x ⊭β_G

- ► The setting: For an undirected graph G, X is a set of binary variables which correspond to edges in G. Instantiation x includes edge e iff the edge variable is set to true in x.
- $\alpha_G = \mathbf{x_1} \lor \mathbf{x_2} \dots$, where $\mathbf{x_i}$ correspond to routes in *G*. $Pr(\mathbf{X})$: route distribution iff $Pr(\mathbf{x}) = 0$ if $\mathbf{x} \not\models \alpha_G$
- Simple Routes: No-loop paths in G. β_G = x₁ ∨ x₂..., where x_i correspond to *simple routes* in G. Then, β_G ⊨ α_G
 Simple-route distribution: Pr(x) = 0 if x ⊭β_G

- ► The setting: For an undirected graph G, X is a set of binary variables which correspond to edges in G. Instantiation x includes edge e iff the edge variable is set to true in x.
- $\alpha_G = \mathbf{x_1} \lor \mathbf{x_2} \dots$, where $\mathbf{x_i}$ correspond to routes in G. $Pr(\mathbf{X})$: route distribution iff $Pr(\mathbf{x}) = 0$ if $\mathbf{x} \not\models \alpha_G$
- Simple Routes: No-loop paths in G. β_G = x₁ ∨ x₂..., where x_i correspond to *simple routes* in G. Then, β_G ⊨ α_G
 Simple-route distribution: Pr(x) = 0 if x ⊭β_G

To learn simple-route distributions using PSDD, compile β_G into an SDD and parameterize it.

- The setting: For an undirected graph G, X is a set of binary variables which correspond to edges in G. Instantiation x includes edge e iff the edge variable is set to true in x.
- $\alpha_G = \mathbf{x_1} \lor \mathbf{x_2} \dots$, where $\mathbf{x_i}$ correspond to routes in *G*. $Pr(\mathbf{X})$: route distribution iff $Pr(\mathbf{x}) = 0$ if $\mathbf{x} \not\models \alpha_G$
- Simple Routes: No-loop paths in G. β_G = x₁ ∨ x₂..., where x_i correspond to *simple routes* in G. Then, β_G ⊨ α_G
 Simple-route distribution: Pr(x) = 0 if x ⊭β_G

- To learn simple-route distributions using PSDD, compile β_G into an SDD and parameterize it.
- Scalability: Simple routes in graphs with as many as 100 nodes and 140 edges can be compiled. But, to handle larger problems, we can:

- The setting: For an undirected graph G, X is a set of binary variables which correspond to edges in G. Instantiation x includes edge e iff the edge variable is set to true in x.
- $\alpha_G = \mathbf{x_1} \lor \mathbf{x_2} \dots$, where $\mathbf{x_i}$ correspond to routes in *G*. $Pr(\mathbf{X})$: route distribution iff $Pr(\mathbf{x}) = 0$ if $\mathbf{x} \not\models \alpha_G$
- Simple Routes: No-loop paths in G. β_G = x₁ ∨ x₂..., where x_i correspond to *simple routes* in G. Then, β_G ⊨ α_G
 Simple-route distribution: Pr(x) = 0 if x ⊭β_G

- To learn simple-route distributions using PSDD, compile β_G into an SDD and parameterize it.
- Scalability: Simple routes in graphs with as many as 100 nodes and 140 edges can be compiled. But, to handle larger problems, we can:
 - advance the current SDD compilation technology, or

- The setting: For an undirected graph G, X is a set of binary variables which correspond to edges in G. Instantiation x includes edge e iff the edge variable is set to true in x.
- $\alpha_G = \mathbf{x_1} \lor \mathbf{x_2} \dots$, where $\mathbf{x_i}$ correspond to routes in *G*. $Pr(\mathbf{X})$: route distribution iff $Pr(\mathbf{x}) = 0$ if $\mathbf{x} \not\models \alpha_G$
- Simple Routes: No-loop paths in G. β_G = x₁ ∨ x₂..., where x_i correspond to *simple routes* in G. Then, β_G ⊨ α_G
 Simple-route distribution: Pr(x) = 0 if x ⊭β_G

- To learn simple-route distributions using PSDD, compile β_G into an SDD and parameterize it.
- Scalability: Simple routes in graphs with as many as 100 nodes and 140 edges can be compiled. But, to handle larger problems, we can:
 - advance the current SDD compilation technology, or
 - use hierarchical maps and distributions.

 A route distribution can be represented hierarchically if we impose hierarchy on the underlying graph.

- A route distribution can be represented hierarchically if we impose hierarchy on the underlying graph.
- ▶ **Hierarchical maps**: Partition nodes of *G* as *N*₁,...*N_m* into *m regions/clusters*. These regions partition edges **X** into

- A route distribution can be represented hierarchically if we impose hierarchy on the underlying graph.
- ▶ **Hierarchical maps**: Partition nodes of *G* as *N*₁,...*N_m* into *m regions/clusters*. These regions partition edges **X** into
 - **B**: Edges crossing the regions.

- A route distribution can be represented hierarchically if we impose hierarchy on the underlying graph.
- ▶ **Hierarchical maps**: Partition nodes of *G* as *N*₁,...*N_m* into *m regions/clusters*. These regions partition edges **X** into
 - **B**: Edges crossing the regions.
 - A_1, \ldots, A_m : Edges inside a region.

- A route distribution can be represented hierarchically if we impose hierarchy on the underlying graph.
- ▶ **Hierarchical maps**: Partition nodes of *G* as *N*₁,...*N_m* into *m regions/clusters*. These regions partition edges **X** into
 - **B**: Edges crossing the regions.
 - A_1, \ldots, A_m : Edges inside a region.
- ▶ Represent Pr(X) using a set of smaller route distributions, Decomposable route distribution: Pr(x) = Pr(b) ∏^m_{i=1} Pr(a_i|b_i)

- A route distribution can be represented hierarchically if we impose hierarchy on the underlying graph.
- ▶ **Hierarchical maps**: Partition nodes of *G* as *N*₁,...,*N_m* into *m regions/clusters*. These regions partition edges **X** into
 - **B**: Edges crossing the regions.
 - A_1, \ldots, A_m : Edges inside a region.
- ▶ Represent Pr(X) using a set of smaller route distributions, Decomposable route distribution: Pr(x) = Pr(b) ∏^m_{i=1} Pr(a_i|b_i)

Graph G_B: Each N_i is a single node.
 Subgraph G_{bi}: From G, keep edges A_i and the edges set positively in b_i (used to enter and exit N_i). Local map for region i.
 So, G_B is an abstraction of G and G_{bi} are subsets of G.

- A route distribution can be represented hierarchically if we impose hierarchy on the underlying graph.
- ▶ **Hierarchical maps**: Partition nodes of *G* as *N*₁,...,*N_m* into *m regions/clusters*. These regions partition edges **X** into
 - **B**: Edges crossing the regions.
 - A_1, \ldots, A_m : Edges inside a region.
- ▶ Represent Pr(X) using a set of smaller route distributions, Decomposable route distribution: Pr(x) = Pr(b) ∏_{i=1}^m Pr(a_i|b_i)

Graph G_B: Each N_i is a single node.
 Subgraph G_{bi}: From G, keep edges A_i and the edges set positively in b_i (used to enter and exit N_i). Local map for region i.
 So, G_B is an abstraction of G and G_{bi} are subsets of G.

▶ $Pr(\mathbf{B})$: Captures routes across regions; $Pr(\mathbf{A_i}|\mathbf{b_i})$: Capture routes within a region. So, total distributions = $1 + \sum_{i=1}^{m} 2^{|B_i|}$

- ▶ $Pr(\mathbf{B})$: Captures routes across regions; $Pr(\mathbf{A_i}|\mathbf{b_i})$: Capture routes within a region. So, total distributions = $1 + \sum_{i=1}^{m} 2^{|B_i|}$
- γ_G = Boolean expression obtained by disjoining x that correspond to simple routes that are also simple w.r.t G_B. Then γ_G. Then γ_G ⊨ β_G ⊨ α_G.

- ▶ $Pr(\mathbf{B})$: Captures routes across regions; $Pr(\mathbf{A_i}|\mathbf{b_i})$: Capture routes within a region. So, total distributions = $1 + \sum_{i=1}^{m} 2^{|B_i|}$
- γ_G = Boolean expression obtained by disjoining x that correspond to simple routes that are also simple w.r.t G_B. Then γ_G. Then γ_G ⊨ β_G ⊨ α_G.
- Hierarchical simple route distribution: If Pr(B) represents simple route distribution for G_B and Pr(A_i|b_i) represent simple route distribution for G_{b_i}, then Pr(X) is a simple route distribution for G.

- ▶ $Pr(\mathbf{B})$: Captures routes across regions; $Pr(\mathbf{A_i}|\mathbf{b_i})$: Capture routes within a region. So, total distributions = $1 + \sum_{i=1}^{m} 2^{|B_i|}$
- γ_G = Boolean expression obtained by disjoining x that correspond to simple routes that are also simple w.r.t G_B. Then γ_G. Then γ_G ⊨ β_G ⊨ α_G.
- Hierarchical simple route distribution: If Pr(B) represents simple route distribution for G_B and Pr(A_i|b_i) represent simple route distribution for G_{b_i}, then Pr(X) is a simple route distribution for G.

► Pr(x) = 0 if $x \not\models \gamma_G$.

- ▶ $Pr(\mathbf{B})$: Captures routes across regions; $Pr(\mathbf{A_i}|\mathbf{b_i})$: Capture routes within a region. So, total distributions = $1 + \sum_{i=1}^{m} 2^{|B_i|}$
- γ_G = Boolean expression obtained by disjoining x that correspond to simple routes that are also simple w.r.t G_B. Then γ_G. Then γ_G ⊨ β_G ⊨ α_G.
- Hierarchical simple route distribution: If Pr(B) represents simple route distribution for G_B and Pr(A_i|b_i) represent simple route distribution for G_{b_i}, then Pr(X) is a simple route distribution for G.

•
$$Pr(x) = 0$$
 if $x \not\models \gamma_G$.

▶ If more than 2 variables of B_i are true in some x, then Pr(x) = 0.

▶ Hierarchical simple-route distribution can be represented by a data structure with size $O(2^{|B|} + \sum_{i=1}^{m} 2^{|A_i|} |B_i|^2)$

▶ Hierarchical simple-route distribution can be represented by a data structure with size $O(2^{|B|} + \sum_{i=1}^{m} 2^{|A_i|} |B_i|^2)$

• Represent Pr(B) and $Pr(A_i|b_i)$ using PSDDs.

- ► Hierarchical simple-route distribution can be represented by a data structure with size $O(2^{|B|} + \sum_{i=1}^{m} 2^{|A_i|} |B_i|^2)$
- Represent Pr(B) and $Pr(A_i|b_i)$ using PSDDs.
- Let Pr(X) be decomposable route distribution, Pr(X|γ_G) be a hierarchical simple-route distribution, α be a query. Then the error of the query Pr(α|γ_G) rel. to Pr(α) is

$$\frac{\Pr(\alpha|\gamma_G) - \Pr(\alpha)}{\Pr(\alpha|\gamma_G)} = \Pr(\kappa_G) \left[1 - \frac{\Pr(\alpha|\kappa_G)}{\Pr(\alpha|\gamma_G)} \right]$$

where $\kappa_{G} = \beta_{G} \wedge \neg \gamma_{G}$.

- ► Hierarchical simple-route distribution can be represented by a data structure with size $O(2^{|B|} + \sum_{i=1}^{m} 2^{|A_i|} |B_i|^2)$
- Represent Pr(B) and $Pr(A_i|b_i)$ using PSDDs.
- Let Pr(X) be decomposable route distribution, Pr(X|γ_G) be a hierarchical simple-route distribution, α be a query. Then the error of the query Pr(α|γ_G) rel. to Pr(α) is

$$\frac{\Pr(\alpha|\gamma_G) - \Pr(\alpha)}{\Pr(\alpha|\gamma_G)} = \Pr(\kappa_G) \left[1 - \frac{\Pr(\alpha|\kappa_G)}{\Pr(\alpha|\gamma_G)} \right]$$

where $\kappa_{G} = \beta_{G} \wedge \neg \gamma_{G}$.

When simple routes are also simple in G_B? Since Pr(γ_G) + Pr(κ_G) = 1, then if Pr(γ_G) ≈ 1, then we expect the hierarchical distribution to be accurate. ► To compile a PSDD for hierarchical simple routes in *G*:

► To compile a PSDD for hierarchical simple routes in *G*:

First compile SDD for each N_i , taking edges A_i and B_i

- ► To compile a PSDD for hierarchical simple routes in *G*:
 - First compile SDD for each N_i , taking edges A_i and B_i
 - Then compile an SDD representing simple routes of the abstracted graph G_B .

- ► To compile a PSDD for hierarchical simple routes in *G*:
 - First compile SDD for each N_i , taking edges A_i and B_i
 - Then compile an SDD representing simple routes of the abstracted graph G_B .
 - Parameterize all the SDDs to get m + 1 PSDDs.

- ► To compile a PSDD for hierarchical simple routes in *G*:
 - First compile SDD for each N_i , taking edges A_i and B_i
 - Then compile an SDD representing simple routes of the abstracted graph G_B .
 - Parameterize all the SDDs to get m + 1 PSDDs.
 - Multiply all the component PSDDs to get a single PSDD over the structured space of hierarchical simple-routes.