SPUDD: Stochastic Planning using Decision Diagrams

Kushagra Chandak

Paper by: Hoey et al, UAI 1999

30th Nov, 2020

► Large state space: Curse of dimensionality.

- Large state space: Curse of dimensionality.
- Abstraction/Aggregation techniques to obviate state enumeration.

- ► Large state space: Curse of dimensionality.
- Abstraction/Aggregation techniques to obviate state enumeration.
- SPUDD: VI for MDPs and POMDPs using ADDs to represent value functions and policies.

- ► Large state space: Curse of dimensionality.
- Abstraction/Aggregation techniques to obviate state enumeration.
- SPUDD: VI for MDPs and POMDPs using ADDs to represent value functions and policies.
- ► ADDs: Generalization of BDDs.

- ► Large state space: Curse of dimensionality.
- Abstraction/Aggregation techniques to obviate state enumeration.
- SPUDD: VI for MDPs and POMDPs using ADDs to represent value functions and policies.
- ► ADDs: Generalization of BDDs.
- Derives from SPI which uses decision trees (unscalable) to represent π and V.

- ► Large state space: Curse of dimensionality.
- Abstraction/Aggregation techniques to obviate state enumeration.
- SPUDD: VI for MDPs and POMDPs using ADDs to represent value functions and policies.
- ADDs: Generalization of BDDs.
- Derives from SPI which uses decision trees (unscalable) to represent π and V.
- Disjunctive structure in probability exploited by decision graphs.

• Bellman Equation: $V_{\pi}(s) = R(s) + \gamma \sum_{t \in S} Pr(s, \pi(s), t) V_{\pi}(t)$

Bellman Equation: V_π(s) = R(s) + γ Σ_{t∈S} Pr(s, π(s), t).V_π(t)
VI eqn: Vⁿ⁺¹(s) = R(s) + max_{a∈A} {γ Σ_{t∈S} Pr(s, a, t).Vⁿ(t)}

• Bellman Equation: $V_{\pi}(s) = R(s) + \gamma \sum_{t \in S} Pr(s, \pi(s), t) V_{\pi}(t)$

$$\blacktriangleright \text{ VI eqn: } V^{n+1}(s) = R(s) + \max_{a \in \mathcal{A}} \left\{ \gamma \sum_{t \in \mathcal{S}} \Pr(s, a, t). V^n(t) \right\}$$

For some finite n, a's that maximize VI eqn form an opt π and Vⁿ approximates its value.

- Bellman Equation: $V_{\pi}(s) = R(s) + \gamma \sum_{t \in S} Pr(s, \pi(s), t) V_{\pi}(t)$
- ► VI eqn: $V^{n+1}(s) = R(s) + \max_{a \in A} \left\{ \gamma \sum_{t \in S} Pr(s, a, t) \cdot V^n(t) \right\}$
- For some finite n, a's that maximize VI eqn form an opt π and Vⁿ approximates its value.
- Stopping criterion: $||V^{n+1} V^n|| < \frac{\epsilon(1-\gamma)}{2\gamma}$ $||X|| = \max\{|x| : x \in X\}$. Resulting π is ϵ -opt and V^{n+1} is within $\epsilon/2$ of V^*

ADD

- ▶ BDD: A function, $f : \mathcal{B}^n \to \mathcal{B}$
- ▶ ADD: Generalize BDD, $f : \mathcal{B}^n \to \mathcal{R}$.
 - For Terminal node: f(.) = c

▶ Non-terminal node: $f(x_1 ... x_n) = x_1 . f_{then}(x_2 ... x_n) + \overline{x_1} . f_{else}(x_2 ... x_n)$

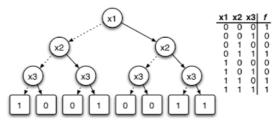


Figure 1: Binary Decision Diagram

State space: X = {X₁...X_n}. Can be extended to multi-valued variables.

- State space: X = {X₁...X_n}. Can be extended to multi-valued variables.
- Action space: DBN. $X = \{X_1, \dots, X_n\} \xrightarrow{a} X' = \{X'_1 \dots X'_n\}$

- State space: X = {X₁...X_n}. Can be extended to multi-valued variables.
- Action space: DBN. $X = \{X_1, \dots, X_n\} \xrightarrow{a} X' = \{X'_1 \dots X'_n\}$
- Directed arcs from variables in X to variables in X' denote direct causal relationship.

- State space: X = {X₁...X_n}. Can be extended to multi-valued variables.
- Action space: DBN. $X = \{X_1, \dots, X_n\} \xrightarrow{a} X' = \{X'_1 \dots X'_n\}$
- Directed arcs from variables in X to variables in X' denote direct causal relationship.
- CPT for each post-action variable X'_i defines a conditional distribution P^a_{X'_i} over X'_i: P^a_{X'_i}(X₁...X_n).

Example

- Process planning problem: A factory agent is tasked to connect 2 objects A and B.
- One way the agent can connect is take take action *bolt*.
- State C (objects connected) is independent of variable P (objects painted).
- If obj A is punched (APU) after bolting depends only on whether it was punched before bolting.
- Use ADDs to represent the functions P^a_{X'_i} (to capture regularities in the CPTs)
- ADDs also exploit context-specific independence in the distributions.

Example

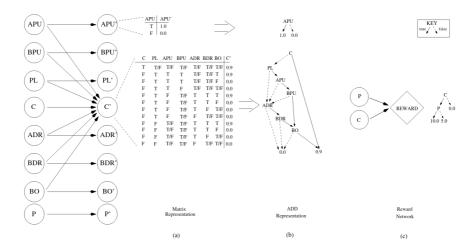


Figure 2: Small FACTORY example: (a) action network for action *bolt*; (b) ADD representation of CPTs (action diagrams); and (c) immediate reward network and ADD representation of the reward table.

Example

▶ Regularity in CPT: $Pr_{C'}^{bolt}(C, PL, APU, BPU, ADR, BDR, BO) = [C + \overline{C}[(PL \cdot \overline{APU} \cdot \overline{PL}) \cdot ADR \cdot BDR + PL \cdot APU \cdot BPU] \cdot BO] \cdot 0.9$

Reward function as ADD: $R(C, P) = C \cdot P \cdot 10 + C \cdot \overline{P} \cdot 5$

- Disjunctive structure exploited by ADD. Eg., CPT for C': Variety of distinct conditions each give give rise to successfully connecting the 2 parts. (Similar to paths)
- ADDs more compact than trees (and tables): 7 internal nodes and 2 leaves vs 11 internal nodes and 12 leaves. Std matrix: 128 parameters.
- ADDs more compact than trees most times but not always.

Avoids explicit enumeration of the state space. (Similar to SDD)

- Avoids explicit enumeration of the state space. (Similar to SDD)
- Classical VI but uses ADDs to represent Vs and CPTs.

SPUDD Algorithm: Overview

- Avoids explicit enumeration of the state space. (Similar to SDD)
- Classical VI but uses ADDs to represent Vs and CPTs.
- Savings both in space and computational time.

SPUDD Algorithm: Overview

- Avoids explicit enumeration of the state space. (Similar to SDD)
- Classical VI but uses ADDs to represent Vs and CPTs.
- Savings both in space and computational time.
- V at each step is represented as an ADD. ($V^0 = R$)

SPUDD Algorithm: Overview

- Avoids explicit enumeration of the state space. (Similar to SDD)
- Classical VI but uses ADDs to represent Vs and CPTs.
- Savings both in space and computational time.
- V at each step is represented as an ADD. ($V^0 = R$)
- Exploit ADD structure of Vⁱ and MDP representation to get ADD structure for Vⁱ⁺¹.

Variables in Vⁱ are replaced by their primed counterparts (post-action vars).

- Variables in Vⁱ are replaced by their primed counterparts (post-action vars).
- Goal: For each a, compute ADD for V_aⁱ⁺¹: Exp value of performing action a.

- Variables in Vⁱ are replaced by their primed counterparts (post-action vars).
- Goal: For each a, compute ADD for V_aⁱ⁺¹: Exp value of performing action a.
 - Negative action diagrams: \$\overline{P_{X_i'}^a}\$ (\$X_1 \ldots X_n\$) = 1 \$P_{X_i'}^a\$ (\$X_1 \ldots X_n\$): Probability that \$a\$ will make \$X_i'\$ false.

- Variables in Vⁱ are replaced by their primed counterparts (post-action vars).
- Goal: For each a, compute ADD for Vⁱ⁺¹_a: Exp value of performing action a.
 - Negative action diagrams: \$\overline{P_{X_i'}^a}(X_1 \ldots X_n) = 1 P_{X_i'}^a(X_1 \ldots X_n)\$:
 Probability that a will make \$X_i'\$ false.
 - ► Dual action diagrams: $Q_{X'_i}^a(X'_i; X_1 ... X_n) = X'_i \cdot P_{X'_i}^a(X_1 ... X_n) + \overline{X'_i} \cdot \overline{P_{X'_i}^a}(X_1 ... X_n)$

- Variables in Vⁱ are replaced by their primed counterparts (post-action vars).
- Goal: For each a, compute ADD for V_aⁱ⁺¹: Exp value of performing action a.
 - Negative action diagrams: \$\overline{P_{X_i'}^a}(X_1 \ldots X_n) = 1 P_{X_i'}^a(X_1 \ldots X_n)\$:
 Probability that a will make \$X_i'\$ false.
 - Dual action diagrams: $Q_{X'_i}^a(X'_i; X_1 \dots X_n) = X'_i \cdot P_{X'_i}^a(X_1 \dots X_n) + \overline{X'_i} \cdot \overline{P_{X'_i}^a}(X_1 \dots X_n)$
- ▶ Intuitively, Q denotes $P(X'_i = x'_i | X_1 = x_1 ... X_n = x_n)$ (under action a)

- Variables in Vⁱ are replaced by their primed counterparts (post-action vars).
- Goal: For each a, compute ADD for V_aⁱ⁺¹: Exp value of performing action a.
 - Negative action diagrams: \$\overline{P_{X_i'}^a}(X_1 \ldots X_n) = 1 P_{X_i'}^a(X_1 \ldots X_n)\$:
 Probability that a will make \$X_i'\$ false.
 - ► Dual action diagrams: $Q_{X'_i}^a(X'_i; X_1 ... X_n) = X'_i \cdot P_{X'_i}^a(X_1 ... X_n) + \overline{X'_i} \cdot \overline{P_{X'_i}^a}(X_1 ... X_n)$
- ▶ Intuitively, Q denotes $P(X'_i = x'_i | X_1 = x_1 ... X_n = x_n)$ (under action a)
- To generate Vⁱ⁺¹_a(s): Combine Vⁱ_a(t) with probability of reaching t from s.

To get Vⁱ⁺¹_a: Multiply dual action diagrams X'_j by V'ⁱ and then eliminate X'_j.

To get Vⁱ⁺¹_a: Multiply dual action diagrams X'_j by V'ⁱ and then eliminate X'_j.

$$\triangleright \quad Q_{X'_j}^a \cdot V'^i = f(X'_1 \dots X'_n, X_1 \dots X_n)$$

To get Vⁱ⁺¹_a: Multiply dual action diagrams X'_j by V'ⁱ and then eliminate X'_j.

$$\triangleright \quad Q_{X'_i}^a \cdot V'^i = f(X'_1 \dots X'_n, X_1 \dots X_n)$$

•
$$f(x'_1,...,x'_n,x_1...x_n) = V'^i(x'_1...x'_n)P(x'_j|x_1...x_n)$$

- To get Vⁱ⁺¹_a: Multiply dual action diagrams X'_j by V'ⁱ and then eliminate X'_i.
- $\triangleright \quad Q_{X'_j}^a \cdot V'^i = f(X'_1 \dots X'_n, X_1 \dots X_n)$
- $f(x'_1,...,x'_n,x_1...x_n) = V'^i(x'_1...x'_n)P(x'_j|x_1...x_n)$
- Elimination of X'_j (Summing over left and right subgraphs of the ADD for f)

To get Vⁱ⁺¹_a: Multiply dual action diagrams X'_j by V'ⁱ and then eliminate X'_i.

$$\triangleright \quad Q_{X'_j}^a \cdot V'^i = f(X'_1 \dots X'_n, X_1 \dots X_n)$$

- $f(x'_1,...,x'_n,x_1...x_n) = V'^i(x'_1...x'_n)P(x'_j|x_1...x_n)$
- Elimination of X'_j (Summing over left and right subgraphs of the ADD for f)

$$g(X'_1 \dots X'_{j-1}, X'_{j+1}] \dots X'_n, X_1 \dots X_n) = \sum_{x'_j} V'^i(X'_1 \dots X'_j) P(x'_j|X_1 \dots X_n)$$

Repeat the previous step for each post-action variable X'_j that occurs in ADD for V'ⁱ: Multiply by Q and eliminate the prime variable.

- Repeat the previous step for each post-action variable X'_j that occurs in ADD for V'ⁱ: Multiply by Q and eliminate the prime variable.
- After elimninating all prime variables, we get $h(X_1 \dots X_n) = \sum_{x'_1 \dots x'_n} V'^i(x'_1 \dots x'_n) P(x'_1 | X_1 \dots X_n) \dots P(x'_n | X_1 \dots X_n)$

- Repeat the previous step for each post-action variable X'_j that occurs in ADD for V'ⁱ: Multiply by Q and eliminate the prime variable.
- After elimninating all prime variables, we get $h(X_1 \dots X_n) = \sum_{x'_1 \dots x'_n} V'^i(x'_1 \dots x'_n) P(x'_1 | X_1 \dots X_n) \dots P(x'_n | X_1 \dots X_n)$

•
$$R + h$$
: ADD representation of V_a^{i+1}

- Repeat the previous step for each post-action variable X'_j that occurs in ADD for V'ⁱ: Multiply by Q and eliminate the prime variable.
- After elimninating all prime variables, we get $h(X_1 \dots X_n) = \sum_{x'_1 \dots x'_n} V'^i(x'_1 \dots x'_n) P(x'_1 | X_1 \dots X_n) \dots P(x'_n | X_1 \dots X_n)$

▶
$$R + h$$
: ADD representation of V_a^{i+1}

► ADD for
$$V^{i+1} = \max_{a \in A} V_a^{i+1}$$

► SPUDD: VI for solving MDPs using ADDs.

- SPUDD: VI for solving MDPs using ADDs.
- ADDs capture regularities in the system dynamics, reward and value: Compact representation of the problem. (vs explicit matrix and decision tree methods)

- SPUDD: VI for solving MDPs using ADDs.
- ADDs capture regularities in the system dynamics, reward and value: Compact representation of the problem. (vs explicit matrix and decision tree methods)
- Drawback: Boolean variables only. (Multi-valued variables can be split into Boolean variables)

- SPUDD: VI for solving MDPs using ADDs.
- ADDs capture regularities in the system dynamics, reward and value: Compact representation of the problem. (vs explicit matrix and decision tree methods)
- Drawback: Boolean variables only. (Multi-valued variables can be split into Boolean variables)
- Ordering of variables fixed; dynamic ordering could reduce size. (Done by SDD)

- SPUDD: VI for solving MDPs using ADDs.
- ADDs capture regularities in the system dynamics, reward and value: Compact representation of the problem. (vs explicit matrix and decision tree methods)
- Drawback: Boolean variables only. (Multi-valued variables can be split into Boolean variables)
- Ordering of variables fixed; dynamic ordering could reduce size. (Done by SDD)
- Extensions to other dynamic programming algorithms.