SPUDD: Stochastic Planning using Decision Diagrams

Kushagra Chandak

Paper by: Hoey et al, UAI 1999
30th Nov, 2020

Introduction: SPUDD

- Large state space: Curse of dimensionality.

Introduction: SPUDD

- Large state space: Curse of dimensionality.
- Abstraction/Aggregation techniques to obviate state enumeration.

Introduction: SPUDD

- Large state space: Curse of dimensionality.
- Abstraction/Aggregation techniques to obviate state enumeration.
- SPUDD: VI for MDPs and POMDPs using ADDs to represent value functions and policies.

Introduction: SPUDD

- Large state space: Curse of dimensionality.
- Abstraction/Aggregation techniques to obviate state enumeration.
- SPUDD: VI for MDPs and POMDPs using ADDs to represent value functions and policies.
- ADDs: Generalization of BDDs.

Introduction: SPUDD

- Large state space: Curse of dimensionality.
- Abstraction/Aggregation techniques to obviate state enumeration.
- SPUDD: VI for MDPs and POMDPs using ADDs to represent value functions and policies.
- ADDs: Generalization of BDDs.
- Derives from SPI which uses decision trees (unscalable) to represent π and V.

Introduction: SPUDD

- Large state space: Curse of dimensionality.
- Abstraction/Aggregation techniques to obviate state enumeration.
- SPUDD: VI for MDPs and POMDPs using ADDs to represent value functions and policies.
- ADDs: Generalization of BDDs.
- Derives from SPI which uses decision trees (unscalable) to represent π and V.
- Disjunctive structure in probability exploited by decision graphs.

Value Iteration (VI) Recap

- Bellman Equation: $V_{\pi}(s)=R(s)+\gamma \sum_{t \in \mathcal{S}} \operatorname{Pr}(s, \pi(s), t) \cdot V_{\pi}(t)$

Value Iteration (VI) Recap

- Bellman Equation: $V_{\pi}(s)=R(s)+\gamma \sum_{t \in \mathcal{S}} \operatorname{Pr}(s, \pi(s), t) \cdot V_{\pi}(t)$
- VI eqn: $V^{n+1}(s)=R(s)+\max _{a \in \mathcal{A}}\left\{\gamma \sum_{t \in \mathcal{S}} \operatorname{Pr}(s, a, t) \cdot V^{n}(t)\right\}$

Value Iteration (VI) Recap

- Bellman Equation: $V_{\pi}(s)=R(s)+\gamma \sum_{t \in \mathcal{S}} \operatorname{Pr}(s, \pi(s), t) \cdot V_{\pi}(t)$
- VI eqn: $V^{n+1}(s)=R(s)+\max _{a \in \mathcal{A}}\left\{\gamma \sum_{t \in \mathcal{S}} \operatorname{Pr}(s, a, t) \cdot V^{n}(t)\right\}$
- For some finite n, a's that maximize VI eqn form an opt π and V^{n} approximates its value.

Value Iteration (VI) Recap

- Bellman Equation: $V_{\pi}(s)=R(s)+\gamma \sum_{t \in \mathcal{S}} \operatorname{Pr}(s, \pi(s), t) \cdot V_{\pi}(t)$
- VI eqn: $V^{n+1}(s)=R(s)+\max _{a \in \mathcal{A}}\left\{\gamma \sum_{t \in \mathcal{S}} \operatorname{Pr}(s, a, t) \cdot V^{n}(t)\right\}$
- For some finite n, a's that maximize VI eqn form an opt π and V^{n} approximates its value.
- Stopping criterion: $\left\|V^{n+1}-V^{n}\right\|<\frac{\epsilon(1-\gamma)}{2 \gamma}$ $\|X\|=\max \{|x|: x \in X\}$. Resulting π is ϵ-opt and V^{n+1} is within $\epsilon / 2$ of V^{*}

ADD

- BDD: A function, $f: \mathcal{B}^{n} \rightarrow \mathcal{B}$
- ADD: Generalize BDD, $f: \mathcal{B}^{n} \rightarrow \mathcal{R}$.
- Terminal node: $f()=$.
- Non-terminal node: $f\left(x_{1} \ldots x_{n}\right)=x_{1} \cdot f_{\text {then }}\left(x_{2} \ldots x_{n}\right)+\overline{x_{1}} \cdot f_{\text {else }}\left(x_{2} \ldots x_{n}\right)$

Figure 1: Binary Decision Diagram

ADD Representation of MDP

- State space: $\mathrm{X}=\left\{X_{1} \ldots X_{n}\right\}$. Can be extended to multi-valued variables.

ADD Representation of MDP

- State space: $\mathrm{X}=\left\{X_{1} \ldots X_{n}\right\}$. Can be extended to multi-valued variables.
- Action space: $\mathrm{DBN} . \mathrm{X}=\left\{X_{1}, \ldots X_{n}\right\} \xrightarrow{a} X^{\prime}=\left\{X_{1}^{\prime} \ldots X_{n}^{\prime}\right\}$

ADD Representation of MDP

- State space: $\mathrm{X}=\left\{X_{1} \ldots X_{n}\right\}$. Can be extended to multi-valued variables.
- Action space: DBN. $X=\left\{X_{1}, \ldots X_{n}\right\} \xrightarrow{a} X^{\prime}=\left\{X_{1}^{\prime} \ldots X_{n}^{\prime}\right\}$
- Directed arcs from variables in X to variables in X^{\prime} denote direct causal relationship.

ADD Representation of MDP

- State space: $\mathrm{X}=\left\{X_{1} \ldots X_{n}\right\}$. Can be extended to multi-valued variables.
- Action space: DBN. $X=\left\{X_{1}, \ldots X_{n}\right\} \xrightarrow{a} X^{\prime}=\left\{X_{1}^{\prime} \ldots X_{n}^{\prime}\right\}$
- Directed arcs from variables in X to variables in X^{\prime} denote direct causal relationship.
- CPT for each post-action variable X_{i}^{\prime} defines a conditional distribution $P_{X_{i}^{\prime}}^{a}$ over $X_{i}^{\prime}: P_{X_{i}^{\prime}}^{a}\left(X_{1} \ldots X_{n}\right)$.

Example

- Process planning problem: A factory agent is tasked to connect 2 objects A and B.
- One way the agent can connect is take take action bolt.
- State C (objects connected) is independent of variable P (objects painted).
- If obj A is punched (APU) after bolting depends only on whether it was punched before bolting.
- Use ADDs to represent the functions $P_{X_{i}^{\prime}}^{a}$ (to capture regularities in the CPTs)
- ADDs also exploit context-specific independence in the distributions.

Example

Figure 2: Small FACTORY example: (a) action network for action bolt; (b) ADD representation of CPTs (action diagrams); and (c) immediate reward network and ADD representation of the reward table.

Example

- Regularity in CPT: $\operatorname{Pr}_{C^{\prime}}^{\text {bolt }}(C, P L, A P U, B P U, A D R, B D R, B O)=$ $[C+\bar{C}[(P L \cdot \overline{A P U} \cdot \overline{P L}) \cdot A D R \cdot B D R+P L \cdot A P U \cdot B P U] \cdot B O] \cdot 0.9$
- Reward function as ADD: $R(C, P)=C \cdot P \cdot 10+C \cdot \bar{P} \cdot 5$
- Disjunctive structure exploited by ADD. Eg., CPT for C': Variety of distinct conditions each give give rise to successfully connecting the 2 parts. (Similar to paths)
- ADDs more compact than trees (and tables): 7 internal nodes and 2 leaves vs 11 internal nodes and 12 leaves. Std matrix: 128 parameters.
- ADDs more compact than trees most times but not always.

SPUDD Algorithm: Overview

- Avoids explicit enumeration of the state space. (Similar to SDD)

SPUDD Algorithm: Overview

- Avoids explicit enumeration of the state space. (Similar to SDD)
- Classical VI but uses ADDs to represent Vs and CPTs.

SPUDD Algorithm: Overview

- Avoids explicit enumeration of the state space. (Similar to SDD)
- Classical VI but uses ADDs to represent Vs and CPTs.
- Savings both in space and computational time.

SPUDD Algorithm: Overview

- Avoids explicit enumeration of the state space. (Similar to SDD)
- Classical VI but uses ADDs to represent Vs and CPTs.
- Savings both in space and computational time.
- V at each step is represented as an ADD. $\left(V^{0}=R\right)$

SPUDD Algorithm: Overview

- Avoids explicit enumeration of the state space. (Similar to SDD)
- Classical VI but uses ADDs to represent Vs and CPTs.
- Savings both in space and computational time.
- V at each step is represented as an ADD. $\left(V^{0}=R\right)$
- Exploit ADD structure of V^{i} and MDP representation to get ADD structure for V^{i+1}.

SPUDD Algorithm

- Variables in V^{i} are replaced by their primed counterparts (post-action vars).

SPUDD Algorithm

- Variables in V^{i} are replaced by their primed counterparts (post-action vars).
- Goal: For each a, compute ADD for V_{a}^{i+1} : Exp value of performing action a.

SPUDD Algorithm

- Variables in V^{i} are replaced by their primed counterparts (post-action vars).
- Goal: For each a, compute ADD for V_{a}^{i+1} : Exp value of performing action a.
- Negative action diagrams: $\overline{P_{X_{i}^{\prime}}^{a}}\left(X_{1} \ldots X_{n}\right)=1-P_{X_{i}^{\prime}}^{a}\left(X_{1} \ldots X_{n}\right)$: Probability that a will make X_{i}^{\prime} false.

SPUDD Algorithm

- Variables in V^{i} are replaced by their primed counterparts (post-action vars).
- Goal: For each a, compute ADD for V_{a}^{i+1} : Exp value of performing action a.
- Negative action diagrams: $\overline{P_{X_{i}^{\prime}}^{a}}\left(X_{1} \ldots X_{n}\right)=1-P_{X_{i}^{\prime}}^{a}\left(X_{1} \ldots X_{n}\right)$: Probability that a will make X_{i}^{\prime} false.
- Dual action diagrams:

$$
Q_{X_{i}^{\prime}}^{a}\left(X_{i}^{\prime} ; X_{1} \ldots X_{n}\right)=X_{i}^{\prime} \cdot P_{X_{i}^{\prime}}^{a}\left(X_{1} \ldots X_{n}\right)+\overline{X_{i}^{\prime}} \cdot \overline{P_{X_{i}^{\prime}}^{\prime}}\left(X_{1} \ldots X_{n}\right)
$$

SPUDD Algorithm

- Variables in V^{i} are replaced by their primed counterparts (post-action vars).
- Goal: For each a, compute ADD for V_{a}^{i+1} : Exp value of performing action a.
- Negative action diagrams: $\overline{P_{X_{i}^{\prime}}^{a}}\left(X_{1} \ldots X_{n}\right)=1-P_{X_{i}^{\prime}}^{a}\left(X_{1} \ldots X_{n}\right)$: Probability that a will make X_{i}^{\prime} false.
- Dual action diagrams:

$$
Q_{X_{i}^{\prime}}^{a}\left(X_{i}^{\prime} ; X_{1} \ldots X_{n}\right)=X_{i}^{\prime} \cdot P_{X_{i}^{\prime}}^{a}\left(X_{1} \ldots X_{n}\right)+\overline{X_{i}^{\prime}} \cdot \overline{P_{X_{i}^{\prime}}^{2}}\left(X_{1} \ldots X_{n}\right)
$$

- Intuitively, Q denotes $P\left(X_{i}^{\prime}=x_{i}^{\prime} \mid X_{1}=x_{1} \ldots X_{n}=x_{n}\right)$ (under action a)

SPUDD Algorithm

- Variables in V^{i} are replaced by their primed counterparts (post-action vars).
- Goal: For each a, compute ADD for V_{a}^{i+1} : Exp value of performing action a.
- Negative action diagrams: $\overline{P_{X_{i}^{\prime}}^{a}}\left(X_{1} \ldots X_{n}\right)=1-P_{X_{i}^{\prime}}^{a}\left(X_{1} \ldots X_{n}\right)$: Probability that a will make X_{i}^{\prime} false.
- Dual action diagrams:

$$
Q_{X_{i}^{\prime}}^{2}\left(X_{i}^{\prime} ; X_{1} \ldots X_{n}\right)=X_{i}^{\prime} \cdot P_{X_{i}^{\prime}}^{a}\left(X_{1} \ldots X_{n}\right)+\overline{X_{i}^{\prime}} \cdot \overline{P_{X_{i}^{\prime}}^{a}}\left(X_{1} \ldots X_{n}\right)
$$

- Intuitively, Q denotes $P\left(X_{i}^{\prime}=x_{i}^{\prime} \mid X_{1}=x_{1} \ldots X_{n}=x_{n}\right)$ (under action a)
- To generate $V_{a}^{i+1}(s)$: Combine $V_{a}^{i}(t)$ with probability of reaching t from s.

SPUDD Algorithm

- To get V_{a}^{i+1} : Multiply dual action diagrams X_{j}^{\prime} by $V^{\prime i}$ and then eliminate X_{j}^{\prime}.

SPUDD Algorithm

- To get V_{a}^{i+1} : Multiply dual action diagrams X_{j}^{\prime} by $V^{\prime i}$ and then eliminate X_{j}^{\prime}.
$-Q_{X_{j}^{\prime}}^{a} \cdot V^{\prime i}=f\left(X_{1}^{\prime} \ldots X_{n}^{\prime}, X_{1} \ldots X_{n}\right)$

SPUDD Algorithm

- To get V_{a}^{i+1} : Multiply dual action diagrams X_{j}^{\prime} by $V^{\prime i}$ and then eliminate X_{j}^{\prime}.
- $Q_{X_{j}^{\prime}}^{a} \cdot V^{\prime i}=f\left(X_{1}^{\prime} \ldots X_{n}^{\prime}, X_{1} \ldots X_{n}\right)$
- $f\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}, x_{1} \ldots x_{n}\right)=V^{\prime i}\left(x_{1}^{\prime} \ldots x_{n}^{\prime}\right) P\left(x_{j}^{\prime} \mid x_{1} \ldots x_{n}\right)$

SPUDD Algorithm

- To get V_{a}^{i+1} : Multiply dual action diagrams X_{j}^{\prime} by $V^{\prime i}$ and then eliminate X_{j}^{\prime}.
- $Q_{X_{j}^{\prime}}^{a} \cdot V^{\prime i}=f\left(X_{1}^{\prime} \ldots X_{n}^{\prime}, X_{1} \ldots X_{n}\right)$
- $f\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}, x_{1} \ldots x_{n}\right)=V^{\prime i}\left(x_{1}^{\prime} \ldots x_{n}^{\prime}\right) P\left(x_{j}^{\prime} \mid x_{1} \ldots x_{n}\right)$
- Elimination of X_{j}^{\prime} (Summing over left and right subgraphs of the ADD for f)

SPUDD Algorithm

- To get V_{a}^{i+1} : Multiply dual action diagrams X_{j}^{\prime} by $V^{\prime i}$ and then eliminate X_{j}^{\prime}.
- $Q_{X_{j}^{\prime}}^{a} \cdot V^{\prime i}=f\left(X_{1}^{\prime} \ldots X_{n}^{\prime}, X_{1} \ldots X_{n}\right)$
- $f\left(x_{1}^{\prime}, \ldots, x_{n}^{\prime}, x_{1} \ldots x_{n}\right)=V^{\prime i}\left(x_{1}^{\prime} \ldots x_{n}^{\prime}\right) P\left(x_{j}^{\prime} \mid x_{1} \ldots x_{n}\right)$
- Elimination of X_{j}^{\prime} (Summing over left and right subgraphs of the ADD for f)
- $g\left(X_{1}^{\prime} \ldots X_{j-1}^{\prime}, X_{j+1]}^{\prime} \ldots X_{n}^{\prime}, X_{1} \ldots X_{n}\right)=$

$$
\sum_{x_{j}^{\prime}} V^{\prime i}\left(X_{1}^{\prime} \ldots x_{j}^{\prime} \ldots X_{n}^{\prime}\right) P\left(x_{j}^{\prime} \mid X_{1} \ldots X_{n}\right)
$$

SPUDD Algorithm

- Repeat the previous step for each post-action variable X_{j}^{\prime} that occurs in ADD for $V^{\prime i}$: Multiply by Q and eliminate the prime variable.

SPUDD Algorithm

- Repeat the previous step for each post-action variable X_{j}^{\prime} that occurs in ADD for $V^{\prime i}$: Multiply by Q and eliminate the prime variable.
- After elimninating all prime variables, we get $h\left(X_{1} \ldots X_{n}\right)=$ $\sum_{x_{1}^{\prime} \ldots x_{n}^{\prime}} V^{\prime i}\left(x_{1}^{\prime} \ldots x_{n}^{\prime}\right) P\left(x_{1}^{\prime} \mid X_{1} \ldots X_{n}\right) \ldots P\left(x_{n}^{\prime} \mid X_{1} \ldots X_{n}\right)$

SPUDD Algorithm

- Repeat the previous step for each post-action variable X_{j}^{\prime} that occurs in ADD for $V^{\prime i}$: Multiply by Q and eliminate the prime variable.
- After elimninating all prime variables, we get $h\left(X_{1} \ldots X_{n}\right)=$ $\sum_{x_{1}^{\prime} \ldots x_{n}^{\prime}} V^{\prime i}\left(x_{1}^{\prime} \ldots x_{n}^{\prime}\right) P\left(x_{1}^{\prime} \mid X_{1} \ldots X_{n}\right) \ldots P\left(x_{n}^{\prime} \mid X_{1} \ldots X_{n}\right)$
- $R+h$: ADD representation of V_{a}^{i+1}

SPUDD Algorithm

- Repeat the previous step for each post-action variable X_{j}^{\prime} that occurs in ADD for $V^{\prime i}$: Multiply by Q and eliminate the prime variable.
- After elimninating all prime variables, we get $h\left(X_{1} \ldots X_{n}\right)=$ $\sum_{x_{1}^{\prime} \ldots x_{n}^{\prime}} V^{\prime i}\left(x_{1}^{\prime} \ldots x_{n}^{\prime}\right) P\left(x_{1}^{\prime} \mid X_{1} \ldots X_{n}\right) \ldots P\left(x_{n}^{\prime} \mid X_{1} \ldots X_{n}\right)$
- $R+h$: ADD representation of V_{a}^{i+1}
- ADD for $V^{i+1}=\max _{a \in \mathcal{A}} V_{a}^{i+1}$

Summary and Conclusion

- SPUDD: VI for solving MDPs using ADDs.

Summary and Conclusion

- SPUDD: VI for solving MDPs using ADDs.
- ADDs capture regularities in the system dynamics, reward and value: Compact representation of the problem. (vs explicit matrix and decision tree methods)

Summary and Conclusion

- SPUDD: VI for solving MDPs using ADDs.
- ADDs capture regularities in the system dynamics, reward and value: Compact representation of the problem. (vs explicit matrix and decision tree methods)
- Drawback: Boolean variables only. (Multi-valued variables can be split into Boolean variables)

Summary and Conclusion

- SPUDD: VI for solving MDPs using ADDs.
- ADDs capture regularities in the system dynamics, reward and value: Compact representation of the problem. (vs explicit matrix and decision tree methods)
- Drawback: Boolean variables only. (Multi-valued variables can be split into Boolean variables)
- Ordering of variables fixed; dynamic ordering could reduce size. (Done by SDD)

Summary and Conclusion

- SPUDD: VI for solving MDPs using ADDs.
- ADDs capture regularities in the system dynamics, reward and value: Compact representation of the problem. (vs explicit matrix and decision tree methods)
- Drawback: Boolean variables only. (Multi-valued variables can be split into Boolean variables)
- Ordering of variables fixed; dynamic ordering could reduce size. (Done by SDD)
- Extensions to other dynamic programming algorithms.

