
SPUDD: Stochastic Planning using Decision Diagrams

Kushagra Chandak

Paper by: Hoey et al, UAI 1999

30th Nov, 2020

1 / 13

Introduction: SPUDD

I Large state space: Curse of dimensionality.

I Abstraction/Aggregation techniques to obviate state enumeration.

I SPUDD: VI for MDPs and POMDPs using ADDs to represent value
functions and policies.

I ADDs: Generalization of BDDs.

I Derives from SPI which uses decision trees (unscalable) to represent
π and V .

I Disjunctive structure in probability exploited by decision graphs.

2 / 13

Introduction: SPUDD

I Large state space: Curse of dimensionality.

I Abstraction/Aggregation techniques to obviate state enumeration.

I SPUDD: VI for MDPs and POMDPs using ADDs to represent value
functions and policies.

I ADDs: Generalization of BDDs.

I Derives from SPI which uses decision trees (unscalable) to represent
π and V .

I Disjunctive structure in probability exploited by decision graphs.

2 / 13

Introduction: SPUDD

I Large state space: Curse of dimensionality.

I Abstraction/Aggregation techniques to obviate state enumeration.

I SPUDD: VI for MDPs and POMDPs using ADDs to represent value
functions and policies.

I ADDs: Generalization of BDDs.

I Derives from SPI which uses decision trees (unscalable) to represent
π and V .

I Disjunctive structure in probability exploited by decision graphs.

2 / 13

Introduction: SPUDD

I Large state space: Curse of dimensionality.

I Abstraction/Aggregation techniques to obviate state enumeration.

I SPUDD: VI for MDPs and POMDPs using ADDs to represent value
functions and policies.

I ADDs: Generalization of BDDs.

I Derives from SPI which uses decision trees (unscalable) to represent
π and V .

I Disjunctive structure in probability exploited by decision graphs.

2 / 13

Introduction: SPUDD

I Large state space: Curse of dimensionality.

I Abstraction/Aggregation techniques to obviate state enumeration.

I SPUDD: VI for MDPs and POMDPs using ADDs to represent value
functions and policies.

I ADDs: Generalization of BDDs.

I Derives from SPI which uses decision trees (unscalable) to represent
π and V .

I Disjunctive structure in probability exploited by decision graphs.

2 / 13

Introduction: SPUDD

I Large state space: Curse of dimensionality.

I Abstraction/Aggregation techniques to obviate state enumeration.

I SPUDD: VI for MDPs and POMDPs using ADDs to represent value
functions and policies.

I ADDs: Generalization of BDDs.

I Derives from SPI which uses decision trees (unscalable) to represent
π and V .

I Disjunctive structure in probability exploited by decision graphs.

2 / 13

Value Iteration (VI) Recap

I Bellman Equation: Vπ(s) = R(s) + γ
∑

t∈S Pr(s, π(s), t).Vπ(t)

I VI eqn: V n+1(s) = R(s) + maxa∈A

{
γ
∑

t∈S Pr(s, a, t).V n(t)
}

I For some finite n, a’s that maximize VI eqn form an opt π and V n

approximates its value.

I Stopping criterion: ||V n+1 − V n|| < ε(1−γ)
2γ

||X || = max{|x | : x ∈ X}. Resulting π is ε-opt and V n+1 is within
ε/2 of V ∗

3 / 13

Value Iteration (VI) Recap

I Bellman Equation: Vπ(s) = R(s) + γ
∑

t∈S Pr(s, π(s), t).Vπ(t)

I VI eqn: V n+1(s) = R(s) + maxa∈A

{
γ
∑

t∈S Pr(s, a, t).V n(t)
}

I For some finite n, a’s that maximize VI eqn form an opt π and V n

approximates its value.

I Stopping criterion: ||V n+1 − V n|| < ε(1−γ)
2γ

||X || = max{|x | : x ∈ X}. Resulting π is ε-opt and V n+1 is within
ε/2 of V ∗

3 / 13

Value Iteration (VI) Recap

I Bellman Equation: Vπ(s) = R(s) + γ
∑

t∈S Pr(s, π(s), t).Vπ(t)

I VI eqn: V n+1(s) = R(s) + maxa∈A

{
γ
∑

t∈S Pr(s, a, t).V n(t)
}

I For some finite n, a’s that maximize VI eqn form an opt π and V n

approximates its value.

I Stopping criterion: ||V n+1 − V n|| < ε(1−γ)
2γ

||X || = max{|x | : x ∈ X}. Resulting π is ε-opt and V n+1 is within
ε/2 of V ∗

3 / 13

Value Iteration (VI) Recap

I Bellman Equation: Vπ(s) = R(s) + γ
∑

t∈S Pr(s, π(s), t).Vπ(t)

I VI eqn: V n+1(s) = R(s) + maxa∈A

{
γ
∑

t∈S Pr(s, a, t).V n(t)
}

I For some finite n, a’s that maximize VI eqn form an opt π and V n

approximates its value.

I Stopping criterion: ||V n+1 − V n|| < ε(1−γ)
2γ

||X || = max{|x | : x ∈ X}. Resulting π is ε-opt and V n+1 is within
ε/2 of V ∗

3 / 13

ADD

I BDD: A function, f : Bn → B
I ADD: Generalize BDD, f : Bn → R.

I Terminal node: f (.) = c
I Non-terminal node: f (x1 . . . xn) = x1.fthen(x2 . . . xn) + x1.felse(x2 . . . xn)

Figure 1: Binary Decision Diagram

4 / 13

ADD Representation of MDP

I State space: X = {X1 . . .Xn}. Can be extended to multi-valued
variables.

I Action space: DBN. X = {X1, . . .Xn}
a−→ X′ = {X ′1 . . .X ′n}

I Directed arcs from variables in X to variables in X′ denote direct
causal relationship.

I CPT for each post-action variable X ′i defines a conditional
distribution Pa

X ′
i

over X ′i : Pa
X ′
i
(X1 . . .Xn).

5 / 13

ADD Representation of MDP

I State space: X = {X1 . . .Xn}. Can be extended to multi-valued
variables.

I Action space: DBN. X = {X1, . . .Xn}
a−→ X′ = {X ′1 . . .X ′n}

I Directed arcs from variables in X to variables in X′ denote direct
causal relationship.

I CPT for each post-action variable X ′i defines a conditional
distribution Pa

X ′
i

over X ′i : Pa
X ′
i
(X1 . . .Xn).

5 / 13

ADD Representation of MDP

I State space: X = {X1 . . .Xn}. Can be extended to multi-valued
variables.

I Action space: DBN. X = {X1, . . .Xn}
a−→ X′ = {X ′1 . . .X ′n}

I Directed arcs from variables in X to variables in X′ denote direct
causal relationship.

I CPT for each post-action variable X ′i defines a conditional
distribution Pa

X ′
i

over X ′i : Pa
X ′
i
(X1 . . .Xn).

5 / 13

ADD Representation of MDP

I State space: X = {X1 . . .Xn}. Can be extended to multi-valued
variables.

I Action space: DBN. X = {X1, . . .Xn}
a−→ X′ = {X ′1 . . .X ′n}

I Directed arcs from variables in X to variables in X′ denote direct
causal relationship.

I CPT for each post-action variable X ′i defines a conditional
distribution Pa

X ′
i

over X ′i : Pa
X ′
i
(X1 . . .Xn).

5 / 13

Example

I Process planning problem: A factory agent is tasked to connect 2
objects A and B.

I One way the agent can connect is take take action bolt.

I State C (objects connected) is independent of variable P (objects
painted).

I If obj A is punched (APU) after bolting depends only on whether it
was punched before bolting.

I Use ADDs to represent the functions Pa
X ′
i

(to capture regularities in

the CPTs)

I ADDs also exploit context-specific independence in the distributions.

6 / 13

Example

Figure 2: Small FACTORY example: (a) action network for action bolt; (b) ADD
representation of CPTs (action diagrams); and (c) immediate reward network and
ADD representation of the reward table.

7 / 13

Example

I Regularity in CPT: PrboltC ′ (C ,PL,APU,BPU,ADR,BDR,BO) =
[C + C [(PL · APU · PL) · ADR · BDR + PL · APU · BPU] · BO] · 0.9

I Reward function as ADD: R(C ,P) = C · P · 10 + C · P · 5
I Disjunctive structure exploited by ADD. Eg., CPT for C’: Variety of

distinct conditions each give give rise to successfully connecting the 2
parts. (Similar to paths)

I ADDs more compact than trees (and tables): 7 internal nodes and 2
leaves vs 11 internal nodes and 12 leaves. Std matrix: 128
parameters.

I ADDs more compact than trees most times but not always.

8 / 13

SPUDD Algorithm: Overview

I Avoids explicit enumeration of the state space. (Similar to SDD)

I Classical VI but uses ADDs to represent V s and CPTs.

I Savings both in space and computational time.

I V at each step is represented as an ADD. (V 0 = R)

I Exploit ADD structure of V i and MDP representation to get ADD
structure for V i+1.

9 / 13

SPUDD Algorithm: Overview

I Avoids explicit enumeration of the state space. (Similar to SDD)

I Classical VI but uses ADDs to represent V s and CPTs.

I Savings both in space and computational time.

I V at each step is represented as an ADD. (V 0 = R)

I Exploit ADD structure of V i and MDP representation to get ADD
structure for V i+1.

9 / 13

SPUDD Algorithm: Overview

I Avoids explicit enumeration of the state space. (Similar to SDD)

I Classical VI but uses ADDs to represent V s and CPTs.

I Savings both in space and computational time.

I V at each step is represented as an ADD. (V 0 = R)

I Exploit ADD structure of V i and MDP representation to get ADD
structure for V i+1.

9 / 13

SPUDD Algorithm: Overview

I Avoids explicit enumeration of the state space. (Similar to SDD)

I Classical VI but uses ADDs to represent V s and CPTs.

I Savings both in space and computational time.

I V at each step is represented as an ADD. (V 0 = R)

I Exploit ADD structure of V i and MDP representation to get ADD
structure for V i+1.

9 / 13

SPUDD Algorithm: Overview

I Avoids explicit enumeration of the state space. (Similar to SDD)

I Classical VI but uses ADDs to represent V s and CPTs.

I Savings both in space and computational time.

I V at each step is represented as an ADD. (V 0 = R)

I Exploit ADD structure of V i and MDP representation to get ADD
structure for V i+1.

9 / 13

SPUDD Algorithm

I Variables in V i are replaced by their primed counterparts (post-action
vars).

I Goal: For each a, compute ADD for V i+1
a : Exp value of performing

action a.

I Negative action diagrams: Pa
X ′
i
(X1 . . .Xn) = 1− Pa

X ′
i
(X1 . . .Xn):

Probability that a will make X ′
i false.

I Dual action diagrams:
Qa

X ′
i
(X ′

i ;X1 . . .Xn) = X ′
i · Pa

X ′
i
(X1 . . .Xn) + X ′

i · Pa
X ′
i
(X1 . . .Xn)

I Intuitively, Q denotes P(X ′i = x ′i |X1 = x1 . . .Xn = xn) (under action
a)

I To generate V i+1
a (s): Combine V i

a(t) with probability of reaching t
from s.

10 / 13

SPUDD Algorithm

I Variables in V i are replaced by their primed counterparts (post-action
vars).

I Goal: For each a, compute ADD for V i+1
a : Exp value of performing

action a.

I Negative action diagrams: Pa
X ′
i
(X1 . . .Xn) = 1− Pa

X ′
i
(X1 . . .Xn):

Probability that a will make X ′
i false.

I Dual action diagrams:
Qa

X ′
i
(X ′

i ;X1 . . .Xn) = X ′
i · Pa

X ′
i
(X1 . . .Xn) + X ′

i · Pa
X ′
i
(X1 . . .Xn)

I Intuitively, Q denotes P(X ′i = x ′i |X1 = x1 . . .Xn = xn) (under action
a)

I To generate V i+1
a (s): Combine V i

a(t) with probability of reaching t
from s.

10 / 13

SPUDD Algorithm

I Variables in V i are replaced by their primed counterparts (post-action
vars).

I Goal: For each a, compute ADD for V i+1
a : Exp value of performing

action a.
I Negative action diagrams: Pa

X ′
i
(X1 . . .Xn) = 1− Pa

X ′
i
(X1 . . .Xn):

Probability that a will make X ′
i false.

I Dual action diagrams:
Qa

X ′
i
(X ′

i ;X1 . . .Xn) = X ′
i · Pa

X ′
i
(X1 . . .Xn) + X ′

i · Pa
X ′
i
(X1 . . .Xn)

I Intuitively, Q denotes P(X ′i = x ′i |X1 = x1 . . .Xn = xn) (under action
a)

I To generate V i+1
a (s): Combine V i

a(t) with probability of reaching t
from s.

10 / 13

SPUDD Algorithm

I Variables in V i are replaced by their primed counterparts (post-action
vars).

I Goal: For each a, compute ADD for V i+1
a : Exp value of performing

action a.
I Negative action diagrams: Pa

X ′
i
(X1 . . .Xn) = 1− Pa

X ′
i
(X1 . . .Xn):

Probability that a will make X ′
i false.

I Dual action diagrams:
Qa

X ′
i
(X ′

i ;X1 . . .Xn) = X ′
i · Pa

X ′
i
(X1 . . .Xn) + X ′

i · Pa
X ′
i
(X1 . . .Xn)

I Intuitively, Q denotes P(X ′i = x ′i |X1 = x1 . . .Xn = xn) (under action
a)

I To generate V i+1
a (s): Combine V i

a(t) with probability of reaching t
from s.

10 / 13

SPUDD Algorithm

I Variables in V i are replaced by their primed counterparts (post-action
vars).

I Goal: For each a, compute ADD for V i+1
a : Exp value of performing

action a.
I Negative action diagrams: Pa

X ′
i
(X1 . . .Xn) = 1− Pa

X ′
i
(X1 . . .Xn):

Probability that a will make X ′
i false.

I Dual action diagrams:
Qa

X ′
i
(X ′

i ;X1 . . .Xn) = X ′
i · Pa

X ′
i
(X1 . . .Xn) + X ′

i · Pa
X ′
i
(X1 . . .Xn)

I Intuitively, Q denotes P(X ′i = x ′i |X1 = x1 . . .Xn = xn) (under action
a)

I To generate V i+1
a (s): Combine V i

a(t) with probability of reaching t
from s.

10 / 13

SPUDD Algorithm

I Variables in V i are replaced by their primed counterparts (post-action
vars).

I Goal: For each a, compute ADD for V i+1
a : Exp value of performing

action a.
I Negative action diagrams: Pa

X ′
i
(X1 . . .Xn) = 1− Pa

X ′
i
(X1 . . .Xn):

Probability that a will make X ′
i false.

I Dual action diagrams:
Qa

X ′
i
(X ′

i ;X1 . . .Xn) = X ′
i · Pa

X ′
i
(X1 . . .Xn) + X ′

i · Pa
X ′
i
(X1 . . .Xn)

I Intuitively, Q denotes P(X ′i = x ′i |X1 = x1 . . .Xn = xn) (under action
a)

I To generate V i+1
a (s): Combine V i

a(t) with probability of reaching t
from s.

10 / 13

SPUDD Algorithm

I To get V i+1
a : Multiply dual action diagrams X ′j by V ′i and then

eliminate X ′j .

I Qa
X ′
j
· V ′i = f (X ′1 . . .X

′
n,X1 . . .Xn)

I f (x ′1, . . . , x
′
n, x1 . . . xn) = V ′i (x ′1 . . . x

′
n)P(x ′j |x1 . . . xn)

I Elimination of X ′j (Summing over left and right subgraphs of the
ADD for f)

I g(X ′1 . . .X
′
j−1,X

′
j+1] . . .X

′
n,X1 . . .Xn) =∑

x ′j
V ′i (X ′1 . . . x

′
j . . .X

′
n)P(x ′j |X1 . . .Xn)

11 / 13

SPUDD Algorithm

I To get V i+1
a : Multiply dual action diagrams X ′j by V ′i and then

eliminate X ′j .

I Qa
X ′
j
· V ′i = f (X ′1 . . .X

′
n,X1 . . .Xn)

I f (x ′1, . . . , x
′
n, x1 . . . xn) = V ′i (x ′1 . . . x

′
n)P(x ′j |x1 . . . xn)

I Elimination of X ′j (Summing over left and right subgraphs of the
ADD for f)

I g(X ′1 . . .X
′
j−1,X

′
j+1] . . .X

′
n,X1 . . .Xn) =∑

x ′j
V ′i (X ′1 . . . x

′
j . . .X

′
n)P(x ′j |X1 . . .Xn)

11 / 13

SPUDD Algorithm

I To get V i+1
a : Multiply dual action diagrams X ′j by V ′i and then

eliminate X ′j .

I Qa
X ′
j
· V ′i = f (X ′1 . . .X

′
n,X1 . . .Xn)

I f (x ′1, . . . , x
′
n, x1 . . . xn) = V ′i (x ′1 . . . x

′
n)P(x ′j |x1 . . . xn)

I Elimination of X ′j (Summing over left and right subgraphs of the
ADD for f)

I g(X ′1 . . .X
′
j−1,X

′
j+1] . . .X

′
n,X1 . . .Xn) =∑

x ′j
V ′i (X ′1 . . . x

′
j . . .X

′
n)P(x ′j |X1 . . .Xn)

11 / 13

SPUDD Algorithm

I To get V i+1
a : Multiply dual action diagrams X ′j by V ′i and then

eliminate X ′j .

I Qa
X ′
j
· V ′i = f (X ′1 . . .X

′
n,X1 . . .Xn)

I f (x ′1, . . . , x
′
n, x1 . . . xn) = V ′i (x ′1 . . . x

′
n)P(x ′j |x1 . . . xn)

I Elimination of X ′j (Summing over left and right subgraphs of the
ADD for f)

I g(X ′1 . . .X
′
j−1,X

′
j+1] . . .X

′
n,X1 . . .Xn) =∑

x ′j
V ′i (X ′1 . . . x

′
j . . .X

′
n)P(x ′j |X1 . . .Xn)

11 / 13

SPUDD Algorithm

I To get V i+1
a : Multiply dual action diagrams X ′j by V ′i and then

eliminate X ′j .

I Qa
X ′
j
· V ′i = f (X ′1 . . .X

′
n,X1 . . .Xn)

I f (x ′1, . . . , x
′
n, x1 . . . xn) = V ′i (x ′1 . . . x

′
n)P(x ′j |x1 . . . xn)

I Elimination of X ′j (Summing over left and right subgraphs of the
ADD for f)

I g(X ′1 . . .X
′
j−1,X

′
j+1] . . .X

′
n,X1 . . .Xn) =∑

x ′j
V ′i (X ′1 . . . x

′
j . . .X

′
n)P(x ′j |X1 . . .Xn)

11 / 13

SPUDD Algorithm

I Repeat the previous step for each post-action variable X ′j that occurs

in ADD for V ′i : Multiply by Q and eliminate the prime variable.

I After elimninating all prime variables, we get h(X1 . . .Xn) =∑
x ′1...x

′
n
V ′i (x ′1 . . . x

′
n)P(x ′1|X1 . . .Xn) . . .P(x ′n|X1 . . .Xn)

I R + h: ADD representation of V i+1
a

I ADD for V i+1 = maxa∈A V i+1
a

12 / 13

SPUDD Algorithm

I Repeat the previous step for each post-action variable X ′j that occurs

in ADD for V ′i : Multiply by Q and eliminate the prime variable.

I After elimninating all prime variables, we get h(X1 . . .Xn) =∑
x ′1...x

′
n
V ′i (x ′1 . . . x

′
n)P(x ′1|X1 . . .Xn) . . .P(x ′n|X1 . . .Xn)

I R + h: ADD representation of V i+1
a

I ADD for V i+1 = maxa∈A V i+1
a

12 / 13

SPUDD Algorithm

I Repeat the previous step for each post-action variable X ′j that occurs

in ADD for V ′i : Multiply by Q and eliminate the prime variable.

I After elimninating all prime variables, we get h(X1 . . .Xn) =∑
x ′1...x

′
n
V ′i (x ′1 . . . x

′
n)P(x ′1|X1 . . .Xn) . . .P(x ′n|X1 . . .Xn)

I R + h: ADD representation of V i+1
a

I ADD for V i+1 = maxa∈A V i+1
a

12 / 13

SPUDD Algorithm

I Repeat the previous step for each post-action variable X ′j that occurs

in ADD for V ′i : Multiply by Q and eliminate the prime variable.

I After elimninating all prime variables, we get h(X1 . . .Xn) =∑
x ′1...x

′
n
V ′i (x ′1 . . . x

′
n)P(x ′1|X1 . . .Xn) . . .P(x ′n|X1 . . .Xn)

I R + h: ADD representation of V i+1
a

I ADD for V i+1 = maxa∈A V i+1
a

12 / 13

Summary and Conclusion

I SPUDD: VI for solving MDPs using ADDs.

I ADDs capture regularities in the system dynamics, reward and value:
Compact representation of the problem. (vs explicit matrix and
decision tree methods)

I Drawback: Boolean variables only. (Multi-valued variables can be
split into Boolean variables)

I Ordering of variables fixed; dynamic ordering could reduce size.
(Done by SDD)

I Extensions to other dynamic programming algorithms.

13 / 13

Summary and Conclusion

I SPUDD: VI for solving MDPs using ADDs.

I ADDs capture regularities in the system dynamics, reward and value:
Compact representation of the problem. (vs explicit matrix and
decision tree methods)

I Drawback: Boolean variables only. (Multi-valued variables can be
split into Boolean variables)

I Ordering of variables fixed; dynamic ordering could reduce size.
(Done by SDD)

I Extensions to other dynamic programming algorithms.

13 / 13

Summary and Conclusion

I SPUDD: VI for solving MDPs using ADDs.

I ADDs capture regularities in the system dynamics, reward and value:
Compact representation of the problem. (vs explicit matrix and
decision tree methods)

I Drawback: Boolean variables only. (Multi-valued variables can be
split into Boolean variables)

I Ordering of variables fixed; dynamic ordering could reduce size.
(Done by SDD)

I Extensions to other dynamic programming algorithms.

13 / 13

Summary and Conclusion

I SPUDD: VI for solving MDPs using ADDs.

I ADDs capture regularities in the system dynamics, reward and value:
Compact representation of the problem. (vs explicit matrix and
decision tree methods)

I Drawback: Boolean variables only. (Multi-valued variables can be
split into Boolean variables)

I Ordering of variables fixed; dynamic ordering could reduce size.
(Done by SDD)

I Extensions to other dynamic programming algorithms.

13 / 13

Summary and Conclusion

I SPUDD: VI for solving MDPs using ADDs.

I ADDs capture regularities in the system dynamics, reward and value:
Compact representation of the problem. (vs explicit matrix and
decision tree methods)

I Drawback: Boolean variables only. (Multi-valued variables can be
split into Boolean variables)

I Ordering of variables fixed; dynamic ordering could reduce size.
(Done by SDD)

I Extensions to other dynamic programming algorithms.

13 / 13

