Linear Algebra: Practice Problems

Kushagra Chandak

- 1. Let A and B are similar matrices. Prove:
 - a. A^2 and B^2 are also similar.
 - b. $(A \lambda I)$ and $(B \lambda I)$ are also similar, for any $\lambda \in F$.
- 2. Suppose that nxn matrices A and B are similar. Then show that the nullity of A is equal to the nullity of B.

3. Let

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \\ 2 & 3 & 5 \end{bmatrix}$$

- a. Find a matrix B in reduced row echelon form such that B is row equivalent to the matrix A.
- b. Find a basis for the null space of A.
- c. Find a basis for the range of A that consists of columns of A. For each columns, A_j of A that does not appear in the basis, express A_j as a linear combination of the basis vectors.
- d. Find a basis for the row space of A.
- 4. (a) Find all 3x3 matrices which are in reduced row echelon form and have rank 1.
 - (b) Find all such matrices with rank 2.
- 5. Determine all possibilities for the number of solutions of each of the system of linear equations described below.
 - (a) A system of 5 equations in 3 unknowns and it has x1=0, x2=3, x3=1 as a solution.
 - (b) A homogeneous system of 5 equations in 4 unknowns and the rank of the system is 4.
- 6. Let A be a 3x3 matrix. Suppose that A has eigenvalues 2 and 1, and suppose that u and v are eigenvectors corresponding to 2 and 1, respectively, where $u = (1, 0, -1)^T$ and $v = (2, 1, 0)^T$. Compute A^5w where $w = (7, 2, -3)^T$
- 7. Prove that all eigenvalues of a real symmetric 2x2 matrix are real.
- 8. Suppose that A is an nxn matrix with eigenvalue λ and corresponding eigenvector v.

- (a) If A is invertible, is v an eigenvector of A^{-1} ? If so, what is the corresponding eigenvalue? If not, explain why not.
- (b) Is 3v an eigenvector of A? If so, what is the corresponding eigenvalue? If not, explain why not.
- 9. Let A be an nxn matrix. Suppose that the matrix A^2 has a real eigenvalue λ . Then show that either $\lambda^{0.5}$ or $-\lambda^{0.5}$ is an eigenvalue of the matrix A.