Linear Algebra: Practice Problems

Kushagra Chandak

1. Let A be a matrix with dimensions $\mathrm{m} \times \mathrm{n}$. Suppose that the nullspace of A is a plane in R^{3} and the column space is spanned by a non-zero vector v in R^{5}. Determine m and n . Also find rank and nullity of A .
2. Let $T: R^{n} \rightarrow R^{m}$ is a linear transformation. Suppose nullity of T is zero. If $\left\{x_{1}, \ldots x_{k}\right\}$ is a linearly independent subset of R^{n} then show that $\left\{T\left(x_{1}\right), \ldots T\left(x_{k}\right)\right\}$ is a linearly independent subset of R^{m}
3. Let $P_{2}(R)$ be the vector space ove R consisting of all polynomials with reall coefficients of degree 2 or less. Let $B=\left\{1, x, x^{2}\right\}$ be a basis of this space. Find the matrix representation of a linear transformation $\mathrm{T}: P_{2}(R) \rightarrow P_{2}(R)$ w.r.t to the basis B where T is defined as

$$
T(f(x))=\frac{d^{2} f(x)}{d x^{2}}-3 \frac{d f(x)}{d x}
$$

4. Let P_{n} be the vector space of polynomial of degree at most n . The standard basis of P_{n} is $B=\left\{1, x, x^{2} \ldots x^{n}\right\}$.
Let $T: P_{3} \rightarrow P_{5}$ be a map defined by

$$
T(f)(x)=\left(x^{2}-2\right) f(x)
$$

Determine if T is a linear transformation and if it is then find the matrix representation of T relative to standard basis of P_{3} and P_{5}
5. Let $C([-1,1])$ denote vector space of real valued continuous functions on the interval $[-1,1]$ Define the subspace

$$
W=\{f \in C([-1,1]) \mid f(0)=0\}
$$

Define the map $T: C([-1,1]) \rightarrow W$ by $T(f)(x)=f(x)-f(0)$. Determine if T is a linear map and if it is, determine its nullspace and range.
6. Let $W=C^{\infty}(R)$ be the vector space of all C^{∞} real-valued functions. Let V be the vector space of all linear transformations from W to W . Let T_{1}, T_{2}, T_{3} be the elements in V defined by

$$
\begin{gathered}
T_{1}(f(x))=\frac{d f(x)}{d x} \\
T_{2}(f(x))=\frac{d^{2} f(x)}{d x^{2}}
\end{gathered}
$$

$$
T_{3}(f(x))=\int_{0}^{x} f(t) d t
$$

Determine whether T_{1}, T_{2}, T_{3} are linearly dependent or independent.
7. Let U and V be vector spaces over a scalar field F . Let $\mathrm{T}: \mathrm{U} \rightarrow \mathrm{V}$ be a linear transformation. Prove that T is injective (one-to-one) if and only if the nullity of T is zero.
8. Let V denote the vector space of 2×2 matrices, and W the vector space of 3×2 matrices. Define the linear transformation $\mathrm{T}: \mathrm{V} \rightarrow \mathrm{W}$ by

$$
T\left(\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\right)=\left[\begin{array}{cc}
a+b & 2 d \\
2 b-d & -3 c \\
2 b-c & -3 a
\end{array}\right]
$$

Find a basis for the range of T .

