
Final Report

Kushagra Chandak
International Institute of Information Technology, Hyderabad (IIIT-H), India

Where do I come from?

Kushagra Chandak Final Report 2 / 26

Where do I come from?

Kushagra Chandak Final Report 3 / 26

Where do I come from?

Kushagra Chandak Final Report 4 / 26

Contents

• Introduction
• Policy Gradient and Actor Critic

• Baseline Algorithms
• Deep Deterministic Policy Gradients (DDPG)

• Ornstein-Uhlenbeck (OU) Process

• Soft Actor Critic (SAC)

• Conservative Value Iteration (CVI)
• Conclusion

Kushagra Chandak Final Report 5 / 26

Introduction

Policy Gradient

• Policy based RL: πθ(s,a) = P(a|s, θ)

• a = µ(s) vs π(a, s) = P(a|s)
• Policy objective functions: J(θ) = Eµ′

[∑
t r(st,at)|πθ(s,a)

]
• Optimize policy by computing noisy estimates of ∇J and then
updating policy in gradient’s direction.

• A lot of problems with vanilla PG (continuous domains, credit
assignment, etc.)

Kushagra Chandak Final Report 6 / 26

Policy Gradient

• Policy based RL: πθ(s,a) = P(a|s, θ)
• a = µ(s) vs π(a, s) = P(a|s)

• Policy objective functions: J(θ) = Eµ′
[∑

t r(st,at)|πθ(s,a)
]

• Optimize policy by computing noisy estimates of ∇J and then
updating policy in gradient’s direction.

• A lot of problems with vanilla PG (continuous domains, credit
assignment, etc.)

Kushagra Chandak Final Report 6 / 26

Policy Gradient

• Policy based RL: πθ(s,a) = P(a|s, θ)
• a = µ(s) vs π(a, s) = P(a|s)
• Policy objective functions: J(θ) = Eµ′

[∑
t r(st,at)|πθ(s,a)

]

• Optimize policy by computing noisy estimates of ∇J and then
updating policy in gradient’s direction.

• A lot of problems with vanilla PG (continuous domains, credit
assignment, etc.)

Kushagra Chandak Final Report 6 / 26

Policy Gradient

• Policy based RL: πθ(s,a) = P(a|s, θ)
• a = µ(s) vs π(a, s) = P(a|s)
• Policy objective functions: J(θ) = Eµ′

[∑
t r(st,at)|πθ(s,a)

]
• Optimize policy by computing noisy estimates of ∇J and then
updating policy in gradient’s direction.

• A lot of problems with vanilla PG (continuous domains, credit
assignment, etc.)

Kushagra Chandak Final Report 6 / 26

Policy Gradient

• Policy based RL: πθ(s,a) = P(a|s, θ)
• a = µ(s) vs π(a, s) = P(a|s)
• Policy objective functions: J(θ) = Eµ′

[∑
t r(st,at)|πθ(s,a)

]
• Optimize policy by computing noisy estimates of ∇J and then
updating policy in gradient’s direction.

• A lot of problems with vanilla PG (continuous domains, credit
assignment, etc.)

Kushagra Chandak Final Report 6 / 26

Actor-Critic

• Represent policy independent
of the value function.

• Policy: Actor, Value: Critic
• Given current state, actor
produces an action.

• Critic produces error signal
given state and reward. It’s
output drives learning in both
actor and critic.

• In DRL, neural nets can be
used to represent actor and
critic.

Kushagra Chandak Final Report 7 / 26

Actor-Critic

• Represent policy independent
of the value function.

• Policy: Actor, Value: Critic

• Given current state, actor
produces an action.

• Critic produces error signal
given state and reward. It’s
output drives learning in both
actor and critic.

• In DRL, neural nets can be
used to represent actor and
critic.

Kushagra Chandak Final Report 7 / 26

Actor-Critic

• Represent policy independent
of the value function.

• Policy: Actor, Value: Critic
• Given current state, actor
produces an action.

• Critic produces error signal
given state and reward. It’s
output drives learning in both
actor and critic.

• In DRL, neural nets can be
used to represent actor and
critic.

Kushagra Chandak Final Report 7 / 26

Actor-Critic

• Represent policy independent
of the value function.

• Policy: Actor, Value: Critic
• Given current state, actor
produces an action.

• Critic produces error signal
given state and reward. It’s
output drives learning in both
actor and critic.

• In DRL, neural nets can be
used to represent actor and
critic.

Kushagra Chandak Final Report 7 / 26

Actor-Critic

• Represent policy independent
of the value function.

• Policy: Actor, Value: Critic
• Given current state, actor
produces an action.

• Critic produces error signal
given state and reward. It’s
output drives learning in both
actor and critic.

• In DRL, neural nets can be
used to represent actor and
critic.

Kushagra Chandak Final Report 7 / 26

Baseline Algorithms

Deep Deterministic Policy Gradient (DDPG)1

• Motivation: To tackle continuous action spaces.

• Combines three techniques together:

• Deterministic Policy Gradient, Actor Critic and Deep Q-Network

• DQN: Learning is stabilized using experience replay and frozen
target network.

• DDPG: Extends DQN to continuous space with actor-critic
framework while learning a deterministic policy.

1Lillicrap et al., 2015
Kushagra Chandak Final Report 8 / 26

Deep Deterministic Policy Gradient (DDPG)1

• Motivation: To tackle continuous action spaces.
• Combines three techniques together:

• Deterministic Policy Gradient, Actor Critic and Deep Q-Network

• DQN: Learning is stabilized using experience replay and frozen
target network.

• DDPG: Extends DQN to continuous space with actor-critic
framework while learning a deterministic policy.

1Lillicrap et al., 2015
Kushagra Chandak Final Report 8 / 26

Deep Deterministic Policy Gradient (DDPG)1

• Motivation: To tackle continuous action spaces.
• Combines three techniques together:

• Deterministic Policy Gradient, Actor Critic and Deep Q-Network

• DQN: Learning is stabilized using experience replay and frozen
target network.

• DDPG: Extends DQN to continuous space with actor-critic
framework while learning a deterministic policy.

1Lillicrap et al., 2015
Kushagra Chandak Final Report 8 / 26

Deep Deterministic Policy Gradient (DDPG)1

• Motivation: To tackle continuous action spaces.
• Combines three techniques together:

• Deterministic Policy Gradient, Actor Critic and Deep Q-Network

• DQN: Learning is stabilized using experience replay and frozen
target network.

• DDPG: Extends DQN to continuous space with actor-critic
framework while learning a deterministic policy.

1Lillicrap et al., 2015
Kushagra Chandak Final Report 8 / 26

Deep Deterministic Policy Gradient (DDPG)1

• Motivation: To tackle continuous action spaces.
• Combines three techniques together:

• Deterministic Policy Gradient, Actor Critic and Deep Q-Network

• DQN: Learning is stabilized using experience replay and frozen
target network.

• DDPG: Extends DQN to continuous space with actor-critic
framework while learning a deterministic policy.

1Lillicrap et al., 2015
Kushagra Chandak Final Report 8 / 26

DDPG: The algorithm

• Choosing action: Get a = µ(s) from actor. While training, add
exploration noise.

Kushagra Chandak Final Report 9 / 26

DDPG: The algorithm

• Choosing action: Get a = µ(s) from actor. While training, add
exploration noise.

• Training critic:

Kushagra Chandak Final Report 9 / 26

DDPG: The algorithm

• Choosing action: Get a = µ(s) from actor. While training, add
exploration noise.

• Training critic: µ(st+1)

Kushagra Chandak Final Report 9 / 26

DDPG: The algorithm

• Choosing action: Get a = µ(s) from actor. While training, add
exploration noise.

• Training critic: Q(st+1, µ(st+1))

Kushagra Chandak Final Report 9 / 26

DDPG: The algorithm

• Choosing action: Get a = µ(s) from actor. While training, add
exploration noise.

• Training critic: yt = r(st,at) + γQ(st+1, µ(st+1))

Kushagra Chandak Final Report 9 / 26

DDPG: The algorithm

• Choosing action: Get a = µ(s) from actor. While training, add
exploration noise.

• Training critic: yt = r(st,at) + γQ(st+1, µ(st+1))
• To train, use st,at as inputs and yt as target.

Kushagra Chandak Final Report 9 / 26

DDPG: The algorithm

• Choosing action: Get a = µ(s) from actor. While training, add
exploration noise.

• Training critic: yt = r(st,at) + γQ(st+1, µ(st+1))
• To train, use st,at as inputs and yt as target.
• Training actor: Deterministic Policy Gradient!

Kushagra Chandak Final Report 9 / 26

DDPG: The algorithm

• Choosing action: Get a = µ(s) from actor. While training, add
exploration noise.

• Training critic: yt = r(st,at) + γQ(st+1, µ(st+1))
• To train, use st,at as inputs and yt as target.
• Training actor: Deterministic Policy Gradient!
• ∇θµ J = Eµ′

[
∇aQ(s,a|θQ)∇θµµ(s|θµ)

]

Kushagra Chandak Final Report 9 / 26

DDPG: The algorithm

• Choosing action: Get a = µ(s) from actor. While training, add
exploration noise.

• Training critic: yt = r(st,at) + γQ(st+1, µ(st+1))
• To train, use st,at as inputs and yt as target.
• Training actor: Deterministic Policy Gradient!
• ∇θµ J = Eµ′

[
∇aQ(s,a|θQ)∇θµµ(s|θµ)

]
• Use actor’s and critic’s online network for µ(s) and ∇Q
respectively.

Kushagra Chandak Final Report 9 / 26

DDPG: The algorithm

• Choosing action: Get a = µ(s) from actor. While training, add
exploration noise.

• Training critic: yt = r(st,at) + γQ(st+1, µ(st+1))
• To train, use st,at as inputs and yt as target.
• Training actor: Deterministic Policy Gradient!
• ∇θµ J = Eµ′

[
∇aQ(s,a|θQ)∇θµµ(s|θµ)

]
• Use actor’s and critic’s online network for µ(s) and ∇Q
respectively.

• Calculate ∇µ(s) given ∇Q and apply those gradient to actor’s
net.

Kushagra Chandak Final Report 9 / 26

DDPG: What’s inside?

• Soft updates (conservative policy iteration) on the parameters
of both actor and critic, with update rate τ << 1:

θ
′
← τθ + (1− τ)θ

′

• The target network values change slowly, unlike DQN where it’s
frozen for sometime.

• Batch Normalization: Normalizing every dimension across
samples in one mini batch. (Not required for simple tasks)

• Better exploration: An exploration policy is µ′ is constructed by
adding noise N

µ
′
(s) = µθ(s) +N

Kushagra Chandak Final Report 10 / 26

DDPG: What’s inside?

• Soft updates (conservative policy iteration) on the parameters
of both actor and critic, with update rate τ << 1:

θ
′
← τθ + (1− τ)θ

′

• The target network values change slowly, unlike DQN where it’s
frozen for sometime.

• Batch Normalization: Normalizing every dimension across
samples in one mini batch. (Not required for simple tasks)

• Better exploration: An exploration policy is µ′ is constructed by
adding noise N

µ
′
(s) = µθ(s) +N

Kushagra Chandak Final Report 10 / 26

DDPG: What’s inside?

• Soft updates (conservative policy iteration) on the parameters
of both actor and critic, with update rate τ << 1:

θ
′
← τθ + (1− τ)θ

′

• The target network values change slowly, unlike DQN where it’s
frozen for sometime.

• Batch Normalization: Normalizing every dimension across
samples in one mini batch. (Not required for simple tasks)

• Better exploration: An exploration policy is µ′ is constructed by
adding noise N

µ
′
(s) = µθ(s) +N

Kushagra Chandak Final Report 10 / 26

DDPG: What’s inside?

• Soft updates (conservative policy iteration) on the parameters
of both actor and critic, with update rate τ << 1:

θ
′
← τθ + (1− τ)θ

′

• The target network values change slowly, unlike DQN where it’s
frozen for sometime.

• Batch Normalization: Normalizing every dimension across
samples in one mini batch. (Not required for simple tasks)

• Better exploration: An exploration policy is µ′ is constructed by
adding noise N

µ
′
(s) = µθ(s) +N

Kushagra Chandak Final Report 10 / 26

Ornstein-Uhlenbeck (OU) Process

• Used for modeling biological processes such as neuronal
response, and in mathematical finance.

• A stochastic process: dxt = θ(µ− xt)dt+ σdWt

• Discretized form: xn+1 = xn + θ(µ− xn)∆t+ σ∆Wn

• Wt: Brownian motion, ∆Wn ∼ N(0,∆t) =
√
∆tN(0, 1)

• Mean reverting process, reverts exponentially at the rate θ.
• Why in DDPG? It’s a diffusion type Markov process (and Normally
distributed).

Kushagra Chandak Final Report 11 / 26

Ornstein-Uhlenbeck (OU) Process

• Used for modeling biological processes such as neuronal
response, and in mathematical finance.

• A stochastic process: dxt = θ(µ− xt)dt+ σdWt

• Discretized form: xn+1 = xn + θ(µ− xn)∆t+ σ∆Wn

• Wt: Brownian motion, ∆Wn ∼ N(0,∆t) =
√
∆tN(0, 1)

• Mean reverting process, reverts exponentially at the rate θ.
• Why in DDPG? It’s a diffusion type Markov process (and Normally
distributed).

Kushagra Chandak Final Report 11 / 26

Ornstein-Uhlenbeck (OU) Process

• Used for modeling biological processes such as neuronal
response, and in mathematical finance.

• A stochastic process: dxt = θ(µ− xt)dt+ σdWt

• Discretized form: xn+1 = xn + θ(µ− xn)∆t+ σ∆Wn

• Wt: Brownian motion, ∆Wn ∼ N(0,∆t) =
√
∆tN(0, 1)

• Mean reverting process, reverts exponentially at the rate θ.
• Why in DDPG? It’s a diffusion type Markov process (and Normally
distributed).

Kushagra Chandak Final Report 11 / 26

Ornstein-Uhlenbeck (OU) Process

• Used for modeling biological processes such as neuronal
response, and in mathematical finance.

• A stochastic process: dxt = θ(µ− xt)dt+ σdWt

• Discretized form: xn+1 = xn + θ(µ− xn)∆t+ σ∆Wn

• Wt: Brownian motion, ∆Wn ∼ N(0,∆t) =
√
∆tN(0, 1)

• Mean reverting process, reverts exponentially at the rate θ.
• Why in DDPG? It’s a diffusion type Markov process (and Normally
distributed).

Kushagra Chandak Final Report 11 / 26

Ornstein-Uhlenbeck (OU) Process

• Used for modeling biological processes such as neuronal
response, and in mathematical finance.

• A stochastic process: dxt = θ(µ− xt)dt+ σdWt

• Discretized form: xn+1 = xn + θ(µ− xn)∆t+ σ∆Wn

• Wt: Brownian motion, ∆Wn ∼ N(0,∆t) =
√
∆tN(0, 1)

• Mean reverting process, reverts exponentially at the rate θ.

• Why in DDPG? It’s a diffusion type Markov process (and Normally
distributed).

Kushagra Chandak Final Report 11 / 26

Ornstein-Uhlenbeck (OU) Process

• Used for modeling biological processes such as neuronal
response, and in mathematical finance.

• A stochastic process: dxt = θ(µ− xt)dt+ σdWt

• Discretized form: xn+1 = xn + θ(µ− xn)∆t+ σ∆Wn

• Wt: Brownian motion, ∆Wn ∼ N(0,∆t) =
√
∆tN(0, 1)

• Mean reverting process, reverts exponentially at the rate θ.
• Why in DDPG? It’s a diffusion type Markov process (and Normally
distributed).

Kushagra Chandak Final Report 11 / 26

Parameters of OU process

• µ(= 0) is the long term
mean.

• θ > 0 is rate of mean
reversion.

• σ > 0 is the volatility, per
square-root t, of the random
fluctuations.

Kushagra Chandak Final Report 12 / 26

DDPG on OpenAI Gym’s Pendulum

Kushagra Chandak Final Report 13 / 26

Soft Actor-Critic (SAC)2

• Off policy max entropy deep reinforcement learning with a
stochastic actor.

• Based on optimization of max entropy objective:

π∗(.|st) = argmaxπEπ

[∑
t
r(st,at) + αH(π(.|st))

]

• How to optimize it?

2Haarnoja et al., 2018
Kushagra Chandak Final Report 14 / 26

Soft Actor-Critic (SAC)2

• Off policy max entropy deep reinforcement learning with a
stochastic actor.

• Based on optimization of max entropy objective:

π∗(.|st) = argmaxπEπ

[∑
t
r(st,at) + αH(π(.|st))

]

• How to optimize it?

2Haarnoja et al., 2018
Kushagra Chandak Final Report 14 / 26

Soft Actor-Critic (SAC)2

• Off policy max entropy deep reinforcement learning with a
stochastic actor.

• Based on optimization of max entropy objective:

π∗(.|st) = argmaxπEπ

[∑
t
r(st,at) + αH(π(.|st))

]

• How to optimize it?

2Haarnoja et al., 2018
Kushagra Chandak Final Report 14 / 26

Optimizing the maximum entropy objective

• One solution: Q-learning but with entropy regularization. (Soft
Q-learning)

• It learns the soft Q-function directly but in continuous domains,
optimal policies can be intractable.

• Better solution: Soft Actor-Critic. Learns a policy and it’s
Q-function combined.

• Similar to DDPG but with a stochastic actor.
• Sample efficient and stable.

Kushagra Chandak Final Report 15 / 26

Optimizing the maximum entropy objective

• One solution: Q-learning but with entropy regularization. (Soft
Q-learning)

• It learns the soft Q-function directly but in continuous domains,
optimal policies can be intractable.

• Better solution: Soft Actor-Critic. Learns a policy and it’s
Q-function combined.

• Similar to DDPG but with a stochastic actor.
• Sample efficient and stable.

Kushagra Chandak Final Report 15 / 26

Optimizing the maximum entropy objective

• One solution: Q-learning but with entropy regularization. (Soft
Q-learning)

• It learns the soft Q-function directly but in continuous domains,
optimal policies can be intractable.

• Better solution: Soft Actor-Critic. Learns a policy and it’s
Q-function combined.

• Similar to DDPG but with a stochastic actor.
• Sample efficient and stable.

Kushagra Chandak Final Report 15 / 26

Optimizing the maximum entropy objective

• One solution: Q-learning but with entropy regularization. (Soft
Q-learning)

• It learns the soft Q-function directly but in continuous domains,
optimal policies can be intractable.

• Better solution: Soft Actor-Critic. Learns a policy and it’s
Q-function combined.

• Similar to DDPG but with a stochastic actor.

• Sample efficient and stable.

Kushagra Chandak Final Report 15 / 26

Optimizing the maximum entropy objective

• One solution: Q-learning but with entropy regularization. (Soft
Q-learning)

• It learns the soft Q-function directly but in continuous domains,
optimal policies can be intractable.

• Better solution: Soft Actor-Critic. Learns a policy and it’s
Q-function combined.

• Similar to DDPG but with a stochastic actor.
• Sample efficient and stable.

Kushagra Chandak Final Report 15 / 26

Soft Actor-Critic: Policy Iteration

• Alternates between 2 steps (policy evaluation and
improvement):

• Soft policy evaluation: Fix a policy and apply soft Bellman backup
until it converges

Q(s, a)← r(s, a) + Es′∼ps,a′∼π

[
Q(s′, a′)− logπ(a′|s′)

]
• Soft policy improvement: Update policy through information
projection

πnew = argminπ′DKL
(
π

′
(.|s)|| 1Z expQ

πold(s, .)
)

• Can be shown that Qπnew ≥ Qπold

Kushagra Chandak Final Report 16 / 26

Soft Actor-Critic: Policy Iteration

• Alternates between 2 steps (policy evaluation and
improvement):

• Soft policy evaluation: Fix a policy and apply soft Bellman backup
until it converges

Q(s, a)← r(s, a) + Es′∼ps,a′∼π

[
Q(s′, a′)− logπ(a′|s′)

]

• Soft policy improvement: Update policy through information
projection

πnew = argminπ′DKL
(
π

′
(.|s)|| 1Z expQ

πold(s, .)
)

• Can be shown that Qπnew ≥ Qπold

Kushagra Chandak Final Report 16 / 26

Soft Actor-Critic: Policy Iteration

• Alternates between 2 steps (policy evaluation and
improvement):

• Soft policy evaluation: Fix a policy and apply soft Bellman backup
until it converges

Q(s, a)← r(s, a) + Es′∼ps,a′∼π

[
Q(s′, a′)− logπ(a′|s′)

]
• Soft policy improvement: Update policy through information
projection

πnew = argminπ′DKL
(
π

′
(.|s)|| 1Z expQ

πold(s, .)
)

• Can be shown that Qπnew ≥ Qπold

Kushagra Chandak Final Report 16 / 26

Soft Actor-Critic: Policy Iteration

• Alternates between 2 steps (policy evaluation and
improvement):

• Soft policy evaluation: Fix a policy and apply soft Bellman backup
until it converges

Q(s, a)← r(s, a) + Es′∼ps,a′∼π

[
Q(s′, a′)− logπ(a′|s′)

]
• Soft policy improvement: Update policy through information
projection

πnew = argminπ′DKL
(
π

′
(.|s)|| 1Z expQ

πold(s, .)
)

• Can be shown that Qπnew ≥ Qπold

Kushagra Chandak Final Report 16 / 26

Soft Actor-Critic: Practical Implementation

• Soft actor-critic uses function approximators (neural nets) for
actor (policy) and critic (Q function).

• Optimizes the two steps (policy evaluation and improvement)
together.

• Can compute unbiased stochastic gradients for both the steps
using off policy data.

Kushagra Chandak Final Report 17 / 26

Soft Actor-Critic: Practical Implementation

• Soft actor-critic uses function approximators (neural nets) for
actor (policy) and critic (Q function).

• Optimizes the two steps (policy evaluation and improvement)
together.

• Can compute unbiased stochastic gradients for both the steps
using off policy data.

Kushagra Chandak Final Report 17 / 26

Soft Actor-Critic: Practical Implementation

• Soft actor-critic uses function approximators (neural nets) for
actor (policy) and critic (Q function).

• Optimizes the two steps (policy evaluation and improvement)
together.

• Can compute unbiased stochastic gradients for both the steps
using off policy data.

Kushagra Chandak Final Report 17 / 26

Results

SAC SAC vs DDPG

Kushagra Chandak Final Report 18 / 26

Towards data efficient and stable
RL:
Conservative Value Iteration

Conservative Value Iteration (CVI)

• Optimizing KL divergence and entropy

Wπ
π̃(s) = Eπ

 ∞∑
t≥0

γt
(
Rt − τ log π(At|St)

π̃(At|St)
− σ logπ(At|St)

)∣∣∣∣∣∣S0 = s



• Find policy that optimizes W

π◦(·|s) = argmaxπWπ
π̃(s).

• Analogous to policy iteration.

Kushagra Chandak Final Report 19 / 26

Conservative Value Iteration (CVI)

• Optimizing KL divergence and entropy

Wπ
π̃(s) = Eπ

 ∞∑
t≥0

γt
(
Rt − τ log π(At|St)

π̃(At|St)
− σ logπ(At|St)

)∣∣∣∣∣∣S0 = s


• Find policy that optimizes W

π◦(·|s) = argmaxπWπ
π̃(s).

• Analogous to policy iteration.

Kushagra Chandak Final Report 19 / 26

Conservative Value Iteration (CVI)

• Optimizing KL divergence and entropy

Wπ
π̃(s) = Eπ

 ∞∑
t≥0

γt
(
Rt − τ log π(At|St)

π̃(At|St)
− σ logπ(At|St)

)∣∣∣∣∣∣S0 = s


• Find policy that optimizes W

π◦(·|s) = argmaxπWπ
π̃(s).

• Analogous to policy iteration.

Kushagra Chandak Final Report 19 / 26

Arriving at CVI

• CVI computes Wk defined by

Wk(s) = Eπk

[
(r+ γPWk−1) (s,A)− τ log πk(A|s)

πk−1(A|s)
− σ logπk(A|s)

]
,

• Find a policy that optimizes the Wk

• Analogous to value iteration.

Kushagra Chandak Final Report 20 / 26

Arriving at CVI

• CVI computes Wk defined by

Wk(s) = Eπk

[
(r+ γPWk−1) (s,A)− τ log πk(A|s)

πk−1(A|s)
− σ logπk(A|s)

]
,

• Find a policy that optimizes the Wk

• Analogous to value iteration.

Kushagra Chandak Final Report 20 / 26

Arriving at CVI

• CVI computes Wk defined by

Wk(s) = Eπk

[
(r+ γPWk−1) (s,A)− τ log πk(A|s)

πk−1(A|s)
− σ logπk(A|s)

]
,

• Find a policy that optimizes the Wk

• Analogous to value iteration.

Kushagra Chandak Final Report 20 / 26

• Let α = τ/(τ + σ) and β := 1/(τ + σ).3. πk can be analytically
obtained as

πk(a|s) =
πk−1(a|s)αeβ(r+γPWk−1)(s,a)∑
b πk−1(b|s)αeβ(r+γPWk−1)(s,b)

.

• After some dangerous algebraic manipulations and defining
action-value function as

Ψk(s,a) = (r+ γPWk−1) (s,a) +
α

β
logπk−1(a|s)

we get πk as

πk(a|s) =
exp (βΨk(s,a))∑
b exp (βΨk(s,b))

and

Wk(s) = mβΨk(s) = Eπk

[
Ψk(s,A)−

1
β
logπk(A|s)

]
,

where mβΨk(s) := β−1 log
∑

a exp (βΨk(s,a)).

3In soft actor-critic, τ = 0, and thus, α = 0 and β = 1/σ = 1.
Kushagra Chandak Final Report 21 / 26

• Let α = τ/(τ + σ) and β := 1/(τ + σ).3. πk can be analytically
obtained as

πk(a|s) =
πk−1(a|s)αeβ(r+γPWk−1)(s,a)∑
b πk−1(b|s)αeβ(r+γPWk−1)(s,b)

.

• After some dangerous algebraic manipulations and defining
action-value function as

Ψk(s,a) = (r+ γPWk−1) (s,a) +
α

β
logπk−1(a|s)

we get πk as

πk(a|s) =
exp (βΨk(s,a))∑
b exp (βΨk(s,b))

and

Wk(s) = mβΨk(s) = Eπk

[
Ψk(s,A)−

1
β
logπk(A|s)

]
,

where mβΨk(s) := β−1 log
∑

a exp (βΨk(s,a)).
3In soft actor-critic, τ = 0, and thus, α = 0 and β = 1/σ = 1.

Kushagra Chandak Final Report 21 / 26

Arriving at CVI

The final (not so dangerous) update rules are:

Ψk(s,a) = r+ γPWk−1(s,a) + α (Ψk−1(s,a)−Wk−1(s))

πk(a|s) =
exp (βΨk(s,a))∑
b exp (βΨk(s,b))

Wk(s) = Eπk

[
Ψk(s,A)−

1
β
logπk(A|s)

]

Kushagra Chandak Final Report 22 / 26

Conclusion

What did I learn?

• A lot of new RL/ML algorithms and recent advances in the field.

• ML tools: tensorflow, pytorch.
• A little neuroscience.
• How to use chopsticks!
• Language and culture of Japan.
• Lunch and tea time discussions!
• Travel and hiking.
• List goes on...

Kushagra Chandak Final Report 23 / 26

What did I learn?

• A lot of new RL/ML algorithms and recent advances in the field.
• ML tools: tensorflow, pytorch.

• A little neuroscience.
• How to use chopsticks!
• Language and culture of Japan.
• Lunch and tea time discussions!
• Travel and hiking.
• List goes on...

Kushagra Chandak Final Report 23 / 26

What did I learn?

• A lot of new RL/ML algorithms and recent advances in the field.
• ML tools: tensorflow, pytorch.
• A little neuroscience.

• How to use chopsticks!
• Language and culture of Japan.
• Lunch and tea time discussions!
• Travel and hiking.
• List goes on...

Kushagra Chandak Final Report 23 / 26

What did I learn?

• A lot of new RL/ML algorithms and recent advances in the field.
• ML tools: tensorflow, pytorch.
• A little neuroscience.
• How to use chopsticks!

• Language and culture of Japan.
• Lunch and tea time discussions!
• Travel and hiking.
• List goes on...

Kushagra Chandak Final Report 23 / 26

What did I learn?

• A lot of new RL/ML algorithms and recent advances in the field.
• ML tools: tensorflow, pytorch.
• A little neuroscience.
• How to use chopsticks!
• Language and culture of Japan.

• Lunch and tea time discussions!
• Travel and hiking.
• List goes on...

Kushagra Chandak Final Report 23 / 26

What did I learn?

• A lot of new RL/ML algorithms and recent advances in the field.
• ML tools: tensorflow, pytorch.
• A little neuroscience.
• How to use chopsticks!
• Language and culture of Japan.
• Lunch and tea time discussions!

• Travel and hiking.
• List goes on...

Kushagra Chandak Final Report 23 / 26

What did I learn?

• A lot of new RL/ML algorithms and recent advances in the field.
• ML tools: tensorflow, pytorch.
• A little neuroscience.
• How to use chopsticks!
• Language and culture of Japan.
• Lunch and tea time discussions!
• Travel and hiking.

• List goes on...

Kushagra Chandak Final Report 23 / 26

What did I learn?

• A lot of new RL/ML algorithms and recent advances in the field.
• ML tools: tensorflow, pytorch.
• A little neuroscience.
• How to use chopsticks!
• Language and culture of Japan.
• Lunch and tea time discussions!
• Travel and hiking.
• List goes on...

Kushagra Chandak Final Report 23 / 26

Did I forget something?

• Most importantly, how to do research!

• Enjoyed a lot attending talks, seminars, meetings and listening
to others work (mice experiments!)

• and

•

Kushagra Chandak Final Report 24 / 26

Did I forget something?

• Most importantly, how to do research!
• Enjoyed a lot attending talks, seminars, meetings and listening
to others work (mice experiments!)

• and

•

Kushagra Chandak Final Report 24 / 26

Did I forget something?

• Most importantly, how to do research!
• Enjoyed a lot attending talks, seminars, meetings and listening
to others work (mice experiments!)

• and

•

Kushagra Chandak Final Report 24 / 26

Did I forget something?

• Most importantly, how to do research!
• Enjoyed a lot attending talks, seminars, meetings and listening
to others work (mice experiments!)

• and

•

Kushagra Chandak Final Report 24 / 26

Take Home

Thank You!

Kushagra Chandak Final Report 25 / 26

Acknowledgements

Arigato Gozaimasu!

Kushagra Chandak Final Report 26 / 26

	Introduction
	Baseline Algorithms
	Towards data efficient and stable RL: Conservative Value Iteration
	Conclusion

