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Introduction



Policy Gradient

• Policy based RL: πθ(s,a) = P(a|s, θ)

• a = µ(s) vs π(a, s) = P(a|s)
• Policy objective functions: J(θ) = Eµ′

[∑
t r(st,at)|πθ(s,a)

]
• Optimize policy by computing noisy estimates of ∇J and then
updating policy in gradient’s direction.

• A lot of problems with vanilla PG (continuous domains, credit
assignment, etc.)
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Actor-Critic

• Represent policy independent
of the value function.

• Policy: Actor, Value: Critic
• Given current state, actor
produces an action.

• Critic produces error signal
given state and reward. It’s
output drives learning in both
actor and critic.

• In DRL, neural nets can be
used to represent actor and
critic.
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Baseline Algorithms



Deep Deterministic Policy Gradient (DDPG)1

• Motivation: To tackle continuous action spaces.

• Combines three techniques together:

• Deterministic Policy Gradient, Actor Critic and Deep Q-Network

• DQN: Learning is stabilized using experience replay and frozen
target network.

• DDPG: Extends DQN to continuous space with actor-critic
framework while learning a deterministic policy.

1Lillicrap et al., 2015
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DDPG: The algorithm

• Choosing action: Get a = µ(s) from actor. While training, add
exploration noise.
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respectively.

• Calculate ∇µ(s) given ∇Q and apply those gradient to actor’s
net.
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DDPG: What’s inside?

• Soft updates (conservative policy iteration) on the parameters
of both actor and critic, with update rate τ << 1:

θ
′
← τθ + (1− τ)θ

′

• The target network values change slowly, unlike DQN where it’s
frozen for sometime.

• Batch Normalization: Normalizing every dimension across
samples in one mini batch. (Not required for simple tasks)

• Better exploration: An exploration policy is µ′ is constructed by
adding noise N

µ
′
(s) = µθ(s) +N
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Ornstein-Uhlenbeck (OU) Process

• Used for modeling biological processes such as neuronal
response, and in mathematical finance.

• A stochastic process: dxt = θ(µ− xt)dt+ σdWt

• Discretized form: xn+1 = xn + θ(µ− xn)∆t+ σ∆Wn

• Wt: Brownian motion, ∆Wn ∼ N(0,∆t) =
√
∆tN(0, 1)

• Mean reverting process, reverts exponentially at the rate θ.
• Why in DDPG? It’s a diffusion type Markov process (and Normally
distributed).
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Parameters of OU process

• µ(= 0) is the long term
mean.

• θ > 0 is rate of mean
reversion.

• σ > 0 is the volatility, per
square-root t, of the random
fluctuations.
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DDPG on OpenAI Gym’s Pendulum
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Soft Actor-Critic (SAC)2

• Off policy max entropy deep reinforcement learning with a
stochastic actor.

• Based on optimization of max entropy objective:

π∗(.|st) = argmaxπEπ

[∑
t
r(st,at) + αH(π(.|st))

]

• How to optimize it?

2Haarnoja et al., 2018
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Optimizing the maximum entropy objective

• One solution: Q-learning but with entropy regularization. (Soft
Q-learning)

• It learns the soft Q-function directly but in continuous domains,
optimal policies can be intractable.

• Better solution: Soft Actor-Critic. Learns a policy and it’s
Q-function combined.

• Similar to DDPG but with a stochastic actor.
• Sample efficient and stable.
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Soft Actor-Critic: Policy Iteration

• Alternates between 2 steps (policy evaluation and
improvement):

• Soft policy evaluation: Fix a policy and apply soft Bellman backup
until it converges

Q(s, a)← r(s, a) + Es′∼ps,a′∼π

[
Q(s′, a′)− logπ(a′|s′)

]
• Soft policy improvement: Update policy through information
projection

πnew = argminπ′DKL
(
π

′
(.|s)|| 1Z expQ

πold(s, .)
)

• Can be shown that Qπnew ≥ Qπold
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Soft Actor-Critic: Practical Implementation

• Soft actor-critic uses function approximators (neural nets) for
actor (policy) and critic (Q function).

• Optimizes the two steps (policy evaluation and improvement)
together.

• Can compute unbiased stochastic gradients for both the steps
using off policy data.
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Results

SAC SAC vs DDPG
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Towards data efficient and stable
RL:
Conservative Value Iteration



Conservative Value Iteration (CVI)

• Optimizing KL divergence and entropy

Wπ
π̃(s) = Eπ

 ∞∑
t≥0

γt
(
Rt − τ log π(At|St)

π̃(At|St)
− σ logπ(At|St)

)∣∣∣∣∣∣S0 = s



• Find policy that optimizes W

π◦(·|s) = argmaxπWπ
π̃(s).

• Analogous to policy iteration.
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Arriving at CVI

• CVI computes Wk defined by

Wk(s) = Eπk

[
(r+ γPWk−1) (s,A)− τ log πk(A|s)

πk−1(A|s)
− σ logπk(A|s)

]
,

• Find a policy that optimizes the Wk

• Analogous to value iteration.
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• Let α = τ/(τ + σ) and β := 1/(τ + σ).3. πk can be analytically
obtained as

πk(a|s) =
πk−1(a|s)αeβ(r+γPWk−1)(s,a)∑
b πk−1(b|s)αeβ(r+γPWk−1)(s,b)

.

• After some dangerous algebraic manipulations and defining
action-value function as

Ψk(s,a) = (r+ γPWk−1) (s,a) +
α

β
logπk−1(a|s)

we get πk as

πk(a|s) =
exp (βΨk(s,a))∑
b exp (βΨk(s,b))

and

Wk(s) = mβΨk(s) = Eπk

[
Ψk(s,A)−

1
β
logπk(A|s)

]
,

where mβΨk(s) := β−1 log
∑

a exp (βΨk(s,a)).

3In soft actor-critic, τ = 0, and thus, α = 0 and β = 1/σ = 1.
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exp (βΨk(s,a))∑
b exp (βΨk(s,b))

and

Wk(s) = mβΨk(s) = Eπk

[
Ψk(s,A)−

1
β
logπk(A|s)

]
,

where mβΨk(s) := β−1 log
∑

a exp (βΨk(s,a)).
3In soft actor-critic, τ = 0, and thus, α = 0 and β = 1/σ = 1.
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Arriving at CVI

The final (not so dangerous) update rules are:

Ψk(s,a) = r+ γPWk−1(s,a) + α (Ψk−1(s,a)−Wk−1(s))

πk(a|s) =
exp (βΨk(s,a))∑
b exp (βΨk(s,b))

Wk(s) = Eπk

[
Ψk(s,A)−

1
β
logπk(A|s)

]
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Conclusion



What did I learn?

• A lot of new RL/ML algorithms and recent advances in the field.

• ML tools: tensorflow, pytorch.
• A little neuroscience.
• How to use chopsticks!
• Language and culture of Japan.
• Lunch and tea time discussions!
• Travel and hiking.
• List goes on...
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Did I forget something?

• Most importantly, how to do research!

• Enjoyed a lot attending talks, seminars, meetings and listening
to others work (mice experiments!)

• and

•
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Take Home

Thank You!
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