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Introduction



Policy Gradient

- Policy based RL: my(s,a) = P(als, 0)
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Policy Gradient

- Policy based RL: my(s,a) = P(als, 0)

- a=p(s)vsm(a,s)=P(als)

+ Policy objective functions: J(8) = E, [3°, r(st, ar)|me(s, a)]

- Optimize policy by computing noisy estimates of VJ and then
updating policy in gradient’s direction.

- A lot of problems with vanilla PG (continuous domains, credit
assignment, etc.)
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- Represent policy independent
of the value function.

Value
Function

/

state action

reward

—[ Environment ]«~

Kushagra Chandak Final Report 7/26



- Represent policy independent
of the value function.

- Policy: Actor, Value: Critic

Value
Function

/

state action

reward

—[ Environment ]«~

Kushagra Chandak Final Report 7/26



- Represent policy independent
of the value function.

- Policy: Actor, Value: Critic

- Given current state, actor
produces an action.

Value
Function

/

state action

reward

—[ Environment ]«~

Kushagra Chandak Final Report 7/26



Actor-Critic
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- Represent policy independent

of the value function.

- Policy: Actor, Value: Critic

- Given current state, actor

produces an action.

- Critic produces error signal

given state and reward. It's
output drives learning in both
actor and critic.
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Actor-Critic

- Represent policy independent
of the value function.

- Policy: Actor, Value: Critic

- Given current state, actor
produces an action.

- Critic produces error signal

state [—- F:ﬁgg " action given statie and reV\{ard: It's
7 output drives learning in both
reward actor and critic.
. - In DRL, neural nets can be
Environment
used to represent actor and

critic.
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Baseline Algorithms



Deep Deterministic Policy Gradient (DDPG)’

- Motivation: To tackle continuous action spaces.

TLillicrap et al,, 2015
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Deep Deterministic Policy Gradient (DDPG)’

- Motivation: To tackle continuous action spaces.
- Combines three techniques together:
- Deterministic Policy Gradient, Actor Critic and Deep Q-Network
- DQN: Learning is stabilized using experience replay and frozen
target network.

- DDPG: Extends DQN to continuous space with actor-critic
framework while learning a deterministic policy.

TLillicrap et al,, 2015
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DDPG: The algorithm

- Choosing action: Get a = u(s) from actor. While training, add
exploration noise.

Kushagra Chandak Final Report 9/26



DDPG: The algorithm

- Choosing action: Get a = u(s) from actor. While training, add
exploration noise.

- Training critic:

Kushagra Chandak Final Report 9/26



DDPG: The algorithm

- Choosing action: Get a = u(s) from actor. While training, add
exploration noise.

- Training critic: p(Se41)

Kushagra Chandak Final Report 9/26



DDPG: The algorithm

- Choosing action: Get a = u(s) from actor. While training, add
exploration noise.

- Training critic:  Q(St41, #(St4+1))
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DDPG: The algorithm

- Choosing action: Get a = u(s) from actor. While training, add
exploration noise.

- Training critic: — yr = r(St, @r) + YQ(St1, (St1))
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DDPG: The algorithm
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DDPG: The algorithm

- Choosing action: Get a = p(s) from actor. While training, add
exploration noise.

: Tl’aimng critic: Vi = r(St, Clt) + ’)/Q(SH_‘\, ,U,(SH_]))
- To train, use s, a; as inputs and y; as target.
- Training actor: Deterministic Policy Gradient!
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DDPG: The algorithm

- Choosing action: Get a = u(s) from actor. While training, add
exploration noise.

- Training critic:  y: = r(st, at) + YQ(St41, p(St1))

- To train, use s, a; as inputs and y; as target.

- Training actor: Deterministic Policy Gradient!

* Voul =K, [VoQ(s,al0%) Veu pu(s]6")]
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DDPG: The algorithm

- Choosing action: Get a = u(s) from actor. While training, add
exploration noise.

- Training critic:  ye = r(st, at) + vQ(St11, #(St41))

- To train, use s, a; as inputs and y; as target.

- Training actor: Deterministic Policy Gradient!

* Voul =E, [VaQ(s,al09)Voup(s|6")]

- Use actor’s and critic’s online network for u(s) and VQ
respectively.
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DDPG: The algorithm

- Choosing action: Get a = u(s) from actor. While training, add
exploration noise.

- Training critic: Yy = r(St, @r) + YQ(St1, (St4+1))

- To train, use S, a: as inputs and y; as target.

- Training actor: Deterministic Policy Gradient!

* Voul =K, [VaQ(s,al0%) Veu pu(s]6")]

- Use actor’s and critic’s online network for u(s) and VQ
respectively.

- Calculate Vpu(s) given VQ and apply those gradient to actor’s
net.
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DDPG: What's inside?

- Soft updates (conservative policy iteration) on the parameters
of both actor and critic, with update rate 7 << 1:

0 —70+(1—1)0

Kushagra Chandak Final Report 10 /26



DDPG: What's inside?

- Soft updates (conservative policy iteration) on the parameters
of both actor and critic, with update rate 7 << 1:

0 —70+(1—1)0

- The target network values change slowly, unlike DQN where it's
frozen for sometime.

Kushagra Chandak Final Report 10 /26



DDPG: What's inside?

- Soft updates (conservative policy iteration) on the parameters
of both actor and critic, with update rate 7 << 1:

0 —70+(1—1)0

- The target network values change slowly, unlike DQN where it's
frozen for sometime.

- Batch Normalization: Normalizing every dimension across
samples in one mini batch. (Not required for simple tasks)

Kushagra Chandak Final Report 10 /26



DDPG: What's inside?

- Soft updates (conservative policy iteration) on the parameters
of both actor and critic, with update rate 7 << 1:

0 —70+(1—1)0
- The target network values change slowly, unlike DQN where it's

frozen for sometime.

- Batch Normalization: Normalizing every dimension across
samples in one mini batch. (Not required for simple tasks)

- Better exploration: An exploration policy is " is constructed by
adding noise

’

p(8) = po(s) + N

Kushagra Chandak Final Report 10 /26



Ornstein-Uhlenbeck (OU) Process

- Used for modeling biological processes such as neuronal
response, and in mathematical finance.
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- Used for modeling biological processes such as neuronal
response, and in mathematical finance.

- A stochastic process: dx; = 0(u — x¢)dt + odW;

- Discretized form: X1 = Xn + 0(u — xp) At + c AW,

- Wy Brownian motion, AW, ~ N(0, At) = v/AtN(0,1)

- Mean reverting process, reverts exponentially at the rate 6.
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Ornstein-Uhlenbeck (OU) Process

- Used for modeling biological processes such as neuronal
response, and in mathematical finance.

- A stochastic process: dx; = 0(u — x¢)dt + odW;

- Discretized form: X1 = Xn + 0(u — xp) At + c AW,

- Wy Brownian motion, AW, ~ N(0, At) = v/AtN(0,1)

- Mean reverting process, reverts exponentially at the rate 6.

- Why in DDPG? It's a diffusion type Markov process (and Normally
distributed).
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- (= 0) is the long term

mean.

- 0 > 0is rate of mean

reversion.

- o > 0 is the volatility, per

square-root t, of the random
fluctuations.
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DDPG on OpenAl Gym’'s Pendulum
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Soft Actor-Critic (SAC)?

- Off policy max entropy deep reinforcement learning with a
stochastic actor.

2Haarnoja et al,, 2018
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Soft Actor-Critic (SAC)?

- Off policy max entropy deep reinforcement learning with a
stochastic actor.

- Based on optimization of max entropy objective:

7w (.|st) = argmax,E, Z r(st, @) + aH(w(.|st))
t

- How to optimize it?

2Haarnoja et al,, 2018
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Optimizing the maximum entropy objective

- One solution: Q-learning but with entropy regularization. (Soft
Q-learning)
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Optimizing the maximum entropy objective

- One solution: Q-learning but with entropy regularization. (Soft
Q-learning)

- It learns the soft Q-function directly but in continuous domains,
optimal policies can be intractable.

- Better solution: Soft Actor-Critic. Learns a policy and it's
Q-function combined.

- Similar to DDPG but with a stochastic actor.
- Sample efficient and stable.
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Soft Actor-Critic: Policy Iteration

- Alternates between 2 steps (policy evaluation and
improvement):
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Soft Actor-Critic: Policy Iteration

- Alternates between 2 steps (policy evaluation and
improvement):

- Soft policy evaluation: Fix a policy and apply soft Bellman backup
until it converges

Q(s,a) « r(s,a) + E¢ wpy .0 [Q(s",0") — logm(a[s")]
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- Alternates between 2 steps (policy evaluation and
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- Soft policy evaluation: Fix a policy and apply soft Bellman backup
until it converges

Q(s,a) « r(s,a) + E¢ wpy .0 [Q(s",0") — logm(a[s")]

- Soft policy improvement: Update policy through information
projection

. ’ 1 .
Thew = C”’Qmmﬁ/ Dt (ﬂ' (‘S)HZ exp Q Old(S, ))
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Soft Actor-Critic: Policy Iteration

- Alternates between 2 steps (policy evaluation and
improvement):

- Soft policy evaluation: Fix a policy and apply soft Bellman backup
until it converges

Q(s,a) « r(s,a) + E¢ wpy .0 [Q(s",0") — logm(a[s")]

- Soft policy improvement: Update policy through information
projection
. / 1 .
Thew = Argmin_s D (w (.\s)||Z exp Q™(s, .))

- Can be shown that Q™ew > Q7o
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Soft Actor-Critic: Practical Implementation

- Soft actor-critic uses function approximators (neural nets) for
actor (policy) and critic (Q function).
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Soft Actor-Critic: Practical Implementation

- Soft actor-critic uses function approximators (neural nets) for
actor (policy) and critic (Q function).

- Optimizes the two steps (policy evaluation and improvement)
together.

- Can compute unbiased stochastic gradients for both the steps
using off policy data.
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SAC SAC vs DDPG
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Towards data efficient and stable
RL:
Conservative Value Iteration




Conservative Value Iteration (CVI)

- Optimizing KL divergence and entropy

- AlS
Wi(s) = E” [Z o (Rt —7log ;EAilsg — o log (A 3))
t>0

SOZS]
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Conservative Value Iteration (CVI)

- Optimizing KL divergence and entropy

- AlS
Wi(s) = E” [Z o (Rt —7log ;EAilsg — o log (A 3))
t>0

SOZS]

- Find policy that optimizes W
7°(-|s) = argmax, Wi (s).

- Analogous to policy iteration.
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Arriving at CVI

- CVI computes W, defined by

mr(AlS)

Wri(s) = E™ | (r 4+ yPWk_1) (s,A) — 7 log Tt (AlS)

-0 [Ogﬂ-k’(Ab) )
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Wri(s) = E™ | (r 4+ yPWk_1) (s,A) — 7 log Tt (AlS)

-0 [Ogﬂ-k’(Ab) )

- Find a policy that optimizes the W

- Analogous to value iteration.
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- Leta=17/(r+0)and B :=1/(r + )3 m can be analytically
obtained as

fﬂ-h_,‘(a|s)0¢eﬁ(r+7pwh—1)(5fa)
ﬂk(G|S): o r+~yPWg_1)(s,b)
> mr1(bls) eB(r+yPW,_1)(s,b)

3In soft actor-critic, 7 = 0, and thus,a = 0 and 8 = 1/o = 1.
Kushagra Chandak Final Report 21/26



- Leta=17/(r+0)and B :=1/(r + )3 m can be analytically
obtained as
fﬂ-h_,‘(a|s)0¢eﬁ(r+7pwh—1)(5fa)

m(als) = >~y mro1(b|s) @Bl aPWe_1)(s,0)”

- After some dangerous algebraic manipulations and defining
action-value function as

Vi(s,a) = (r+ yPWe—1) (s, a) + % log mr—4(als)

we get my, as

exp (ﬁwk(s> G))
26 €Xp (BV(s, b))

mr(als) =

and

We(s) = mgWi(s) = E™ |Wi(s,A) — % log mr(Als) |,

where mgW,(s) := 37" log >, exp (BVk(s, a)).

3In soft actor-critic, 7 = 0, and thus,a = 0 and 8 = 1/o = 1.
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Arriving at CVI

The final (not so dangerous) update rules are:

Vi(s,a) = r+ yPWe_(s,a) + a (Vi_1(s, a) — Wi_1(s))

e (B¥i(s, a))
(1) = S o (BUs 6. )

Wils) = E™ | Wy(s,A) - 5 logm(Als)
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Conclusion




What did | learn?

- A lot of new RL/ML algorithms and recent advances in the field.
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What did | learn?

- A lot of new RL/ML algorithms and recent advances in the field.
- ML tools: tensorflow, pytorch.

- A little neuroscience.

- How to use chopsticks!

- Language and culture of Japan.

- Lunch and tea time discussions!

- Travel and hiking.

- List goes on...
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Did | forget something?

- Most importantly, how to do research!
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