
IIIT Hyderabad Scribed By: Kushagra Chandak

- Aagam Shah

Topics in Machine Learning (CSE975) Lecture #7

Instructor: Dr. Naresh Manwani August 29, 2017

Outline. We introduce Reinforcement Learning with the Multi Arm Bandit (MAB) Learning algo-
rithm and define its objective. Finally we give a brief introduction to the Upper Confidence Bound
(UCB) algorithm.

1 Reinforcement Learning

• Reinforcement learning (RL) is learning about what action to take when given a situation
(state), so that we maximize our reward in the long run.

• In reinforcement learning, the learner does not receive any direct supervision. For example,
it is not told which is a good action in a given state. Instead, it receives rewards or penalties
for choosing an action in a given state. And the learner must discover which actions yield the
most reward by trying them. Thus, the learning happens by interacting with environment
and observing the results of these interactions.

• In the most interesting and challenging cases, actions may affect not only the immediate
reward, but also the next situation and, through that, all subsequent rewards.

• This interestingly also mimics the fundamental way in which humans learn. As humans, we
have a direct sensori-motor connection to our environment, meaning we can perform actions
and witness the results of these actions on the environment.

1.1 An example : Chess

• In the popular board game, Chess, each player can perform a certain set of actions in a
particular state. On performing any of these actions, the state of the board changes, also
affecting the possible set of actions (from this state).

• Each player performs an action to try and get the best cumulative reward (which might be in
the form of capturing an opponent’s piece or some other form) with the final goal of capturing
the king.

• Each such reward will be different for different action/state combination and will also depend
on the player’s and his/her opponent’s previous actions.

Here we consider a simpler setting called the ”Multi Armed Bandit Problem”, which has only one
state.

1



2 Multi Armed Bandit Learning

Multi-armed bandit learning is motivated from the famous old styled gambling machines (with arms
to be pulled). A person want to maximize the money (reward) obtained by successively playing the
gamble machines (the ”arms” of the bandits). Also, the rewards corresponding to each machine are
unknown ahead of time and each machine has a different and unknown distribution law for rewards.
The machines have been set up such that successive plays of the same machine yield rewards that
are independently and identically distributed.

2.1 A Practical Application: Ethical Clinical Trials

For a given disease, let there be K kinds of treatment available. A medical practitioner would want
to evaluate all K possible treatments and find out which one is the most effective. The immediate
reward here is the wellness of a patient.

2.2 The Algorithm

Let n be the number of arms, t be the trial number and xti be the reward obtained on pulling arm
i on trial t. Then a generic MAB algorithm works as follows.

Algorithm 1 MAB algorithm

1: for t = 1...T do
2: Select an arm it ∈ {1...n}
3: Environment selects a reward vector xt = (xt1, ..., x

t
n) ∈ [0, 1]n

4: Algorithm observes the selected reward xtit

Let (i1, x
1
i1

), ..., (iT , x
T
iT

) be the sequence of arms played and corresponding rewards in T trials.
Given a sequence of arms played and rewards earned in t− 1 trails, the MAB algorithm A returns
an arm it ∈ {1, ..., n} to play in the tth trial. Therefore, this arm it, in general depends on the
rewards x1i1 , ..., x

t−1
it−1

.

2.3 The Objective

The objective of the MAB algorithm is to maximize the sum of rewards also called gain. Gain of
A on a sequence of reward vectors is given by:

GT (A) = G(x1,...,xT )[A] =

T∑
t=1

xtit

Gain of an individual arm i over a sequence of reward vectors is given by:

GT (i) =
T∑
t=1

xti

The regret of an algorithm A over a sequence of reward vectors (x1, . . . ,xT ) is given by:

R(x1,...,xT)(A) = max
i∈{1,...,n}

GT (i)−GT (A)

Thus, the objective of MAB algorithm A is to minimize the regret RT (A).

2



3 Different MAB settings

3.1 Stochastic MAB

Each arm i ∈ {1, ..., n} is associated with an unknown probability distribution qi on the space
of rewards. At each trial t, reward xti, t = 1 . . . T for arm i are drawn independently from qi.
Let µi denote the mean reward for arm i, that is µi = Exi∼qi [xi]. µi’s are unknown. Let µ∗ =
maxi∈{1,...,n} µi be the mean reward of the optimal arm. Let ∆i = µ∗−µi be the difference between
the mean reward of an optimal arm and the mean reward of arm i. Then expected regret is given
as:

RT (A) = E(x1,...,xT)

[
max

i∈{1,...,n}

T∑
t=1

xti −
T∑
t=1

xtit

]

3.2 Pseudo Regret

Since the expected regret is difficult to handle, we minimize pseudo regret given as follows.

R̃T (A) = max
i∈{1,...,n}

E(x1,...,xT)[

T∑
t=1

xti −
T∑
t=1

xtit ]

Note that the pseudo-regret is upper bounded by the expected regret, and therefore an upper bound
on the pseudo-regret does not imply an upper bound on the expected regret (i.e. an upper bound
on the pseudo regret is a weaker statement than an upper bound on the expected regret). When
there is randomization in the algorithm, we also take expectation over this randomness in defining
the above quantities. In order to minimize the pseudo-regret, we essentially try to find an optimal
arm, i.e. an arm with highest mean reward µ∗. Various strategies have been proposed to do this;
and in most cases, we make use of sample means of the rewards obtained with different arms to
estimate the true mean µi.

3.3 Adversarial MAB (to be studied in a later lecture)

No probabilistic assumptions on rewards xti. Rewards can be generated by an adversary. We will
talk more about this in the upcoming classes.

4 Action Value Methods

In the action value methods, we basically maintain average reward corresponding to each action
(arm). We then use these average rewards to define the policy to choose an arm.
µi are also termed as action values. µ̂ti is the empirical estimate of µi till time t and is called the
estimate of action value µi.

µ̂ti =

∑t−1
s=1 x

s
i I{is=i}∑t−1

s=1 I{is=i}
(1)

3



4.1 Efficient implementation of µ̂ti

Given µ̂t−1i , N t−1
i and xtit , we can find µ̂ti as follows.

µ̂ti =
1∑t

s=1 I{is=i}

t∑
s=1

xsi I{is=i}

=
1∑t−1

s=1 I{is=i} + I{it=i}

[
xtiI{it=i} +

t−1∑
s=1

xsi I{is=i}

]

=
1

N t−1
i + I{it=i}

[
xtiI{it=i} + µ̂t−1i

t−1∑
s=1

I{is=i}

]

=
1

N t−1
i + I{it=i}

[
xtiI{it=i} + µ̂t−1i

t∑
s=1

I{is=i} − µ̂
t−1
i I{it=i}

]

= µ̂t−1i +
I{it=i}

N t−1
i + I{it=i}

[xti − µ̂t−1i ]

where N t−1
i =

∑t−1
s=1 I{is=i} is the number of times arm i is pulled in t− 1 trials.

4.2 The Exploitation-Exploration Dilemma

The main issue here is to trade-off between exploration and exploitation. If an agent has tried a
certain action in the past and got good rewards, then its action value so far is good. Then choosing
this action based on its past performance is called exploitation. On the other hand, there may be
other action (arm) which can have better value (mean reward) than the current best. Thus, it is
desirable to try other possibilities in the hope of producing better rewards. This process if called
exploration.
We can’t exploit all the time as it may lead us to choose suboptimal action (arm) all the time as
we don’t know whether there is an arm which is better than the current best. On the other hand,
we cant explore always as there are many suboptimal arms and exploring them all will again lead
us to poor gains.
Thus, we need to make a balance between exploration and exploitation. The most common way to
achieve a nice balance is to try a variety of actions while progessively favouring those that stand out
as producing the most reward. In the next sections, we look and analyze various simple approaches
to solve the Multi-Armed Bandit problem.

5 Greedy Approach

We begin with the simplest method called Greedy Approach where we don’t explore but only
exploit. The idea is to make best decision given current information and not look for any new
information.
We know that the true value of an action is the mean reward received when that action is selected.
Let N t

i be the number of times i-th arm is selected in t trials. Then the mean reward is

µ̂ti =
1

N t
i

t∑
s=1

xsi I{is=i}

4



If N t
i = 0, we define µti instead as some default value like µti = 0. As N t

i −→∞, µti converges to µi
by law of large numbers. In greedy approach, we pick an arm at trial t with highest current action
value (average reward).

it = arg max
i∈{1,...,n}

µ̂t−1i

An advantage of this method is that it’s very simple to understand and implement. The biggest
disadvantage is that this method always exploits current knowledge to maximize immediate reward
and does not explore other arms (actions) which might be potentially optimal.

5.1 ε-greedy approach

The exploration-exploitation dilemma is the biggest problem in the stochastic MAB setting. There’s
always some trade-off between exploiting the current knowledge to pick the arm that has highest
reward (as in greedy approach), and exploring further the other arms to get a better reward in
future. Since Greedy Approach, as described above, only exploits, we need a better strategy and the
solution is to perform exploration and exploitation simultaneously, which is done by the ε-greedy
heuristic.
The ε-greedy algorithm is similar to the greedy one, except it has an extra parameter ε which is
sometimes also called exploration probability. The idea is very simple. First, pick a parameter
0 < ε < 1. Then, at each step greedily pick the arm with highest empirical mean reward with
probability 1 − ε (exploitation phase), and pick a random arm with probability ε (exploration
phase). If ε is a function of time (instead of a constant), we can get logarithmic bound instead
of a linear bound. If εt = n/d2t then it can be proved that the regret grows logarithmically like
n log T/d2 provided 0 < d < mini 6=i∗∆i and algorithm with this ε performs well in practice.

Algorithm 2 ε-greedy algorithm

Input: ε ∈ (0, 1)
for t = 1 to T do

Toss a coin with probability of success ε.
if success then

explore: choose an arm uniformly at random
else

exploit: choose the arm with the highest average reward so far

5.1.1 Remarks

As the number of time steps increases, each arm would get selected infinitely many times (thanks
to exploration phase) and the sample estimates of mean rewards will converge to the actual mean
rewards (by law of large numbers). Thus, probability of selecting the optimal action converges to
greater than 1 − ε. In ε-greedy, the exploration schedule does not depend on the history of the
observed rewards. Whereas it is usually better to adapt exploration to the observed rewards.

5



6 Upper Confidence Bound (UCB) Algorithm (to be continued in
the next lecture)

6.1 Brief introduction

So far, we have seen algorithms which either selects the arm with highest average reward or some-
times decides to explore and pick an option that currently doesn’t seem the best. But they don’t
keep track of how much they know about any of the arms available to them. Only the rewards are
recorded by these algorithms. We might end up less (or no) exploring the options and that can
give us sub optimal rewards. In UCB algorithm we keep track of how much we know about each
arm in terms of confidence intervals around the mean rewards.
Basic idea: Suppose there are 2 suboptimal actions, but one of them has less uncertainty than the
other (perhaps one is sampled more number of times than the other). More certain the action, less
likely is its value better than the optimal (greedy) choice. The estimate for other action is very
uncertain and the chances that its true value is better than the optimal action are quite high. So
clearly, it is sensible to explore the second choice than the first one. This exploration is done by
estimating a confidence interval for each action’s value and the action with highest upper limit of
confidence interval is selected. This is the basic idea behind UCB which encourages exploration of
actions that are more uncertain. It achieves regret that grows logarithmically with the number of
actions taken.
As an arm is sampled more and more, the confidence interval around µi (sample mean) becomes

tighter (because of the
√

αlnt
2Nt−1

i

factor), giving more accurate estimate of the true mean reward.

Algorithm 3 UCB algorithm

1: Parameter α > 0
2: for t = 1...T do
3: Select an arm it ∈ arg maxi∈{1...n}[µ̂

t−1
i +

√
α ln t
2Nt−1

i

]

4: Algorithm observes reward xtit

References

[1] Reinforcement Learning: An Introduction by Richard S. Sutton and Andrew G. Barto.

[2] http://profs.sci.univr.it/farinelli/courses/ddrMAS/slides/Bandit.pdf

[3] Regret Analysis of Stochastic and Non-stochastic Multi-armed Bandit Problems by Sebastian
Bubeck and Nicolo Cesa-Bianchi

6


