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Problem Statement
-These days the ecommerce industry is rapidly increasing and consumers are 
increasingly interested in booking hotels online. So, if hotels are recommended to 
users, it’ll save their time and increase the marketing of the e-commerce website.

-Recommending products to consumers is a popular application of ML, especially 
when there’s substantial data about consumers’ preferences. 

-We’ve a dataset containing information about 37 million users and we need to 
recommend hotel clusters to these users.   



Dataset Information
Data Source - Kaggle

Number of Instances - 37 million

Number of features-23



Dataset and Features
The data consisted of anonymized features including aspects such as number of 
children, number of rooms booked, destination visited, state of check in and 
check out, location of user when booking, whether or not the booking was part of 
a package, etc.

Some feature engineering was used on the dataset to extract more useful 
features. The date of check in, date checkout and date of booking were removed 
and replaced with length of stay -- dates discretized into a format which is more 
friendly to use with our learning algorithms.  Also, this feature is clearly more 
useful for our problem. 



Features



Problem Challenges
-Huge Dataset

Since the training dataset was so huge( 37 million data point) and required a lot 
computational time one of the important task was to downsample data such that 
most of the useful information is retained.

-Few attributes were non vectorial  

Few feature were of string form but had significant importance , so we converted 
that attribute into integer form.

-Missing attribute values



Pre Processing 
-Replaced missing attributes with the most frequent value.

-Downsampling

Downsampled the training dataset such that prior probabilities of all the hotel 
clusters remain same.    



-More useful feature  obtained

Some of the feature like date in time and out time was converted into length_of_stay 
which is a more significant or a useful feature for our problem.

-Performed PCA

Performed PCA on the resultant training dataset to reduce the dimensions from 21 

to 12.



Principal Component Analysis

PCA



Projected Data in 2-D



Projected Data in 3-D



Choosing the value of K (Projected Dimension)

Energy=(∑ i =1
K ƛi)

          ( ∑j=1
N ƛj )  



Algorithms Implemented
● Naive Bayes 
● Softmax Regression
● SVM
● Weighted user similarity -- involves combination of clustering, kernelized 

similarity and weighting distance. 



Naive Bayes



Analysis of Naive Bayes
For Naive Bayes, we hand-selected a few features, to get a basic machine 
learning algorithm running. We calculated target class probabilities for the 
categorical features, and  normalized continuous variables based on target label 
values. For each attribute in the test set, we converted its value to booking 
probability based on the the observed probabilities in the training set.



Prior Probability of Cluster



As
su
mp

tio
ns Attribute Linearly Independent

The main assumption made while applying Naive Bayes 
classifier was that attribute of training dataset obtained 
after PCA are linearly independent so that we can directly 
treat each attribute as independent random variable and 
multiply each of them to get probability of each cluster

Normal Density Function 

Assumed normal density function for each class 



Re
su
lts

Algorithm Precision Recall

Naive Bayes 0.0596321 0.0567834



Support Vector Machines(SVM)

Support vector machines (SVMs) are supervised learning models 
with associated learning algorithms that analyze data used for 
classification It uses kernel trick to transform your data and then 
based on these transformations it finds an optimal boundary 
between the possible outputs. 



Support Vector Machine (SVM)  
Applied Multi Class SVM using 3 different kernels

● Linear
● Polynomial
● RBF

One Vs. All Classifier is used

SVM is applied on data obtained after PCA to downsampled data (40 lakhs instances). 



Re
su
lts Algorithm Precision Recall

SVM linear 0.034829 0.032112

SVM Linear

Linear kernel performed poorly due to lack of linear 
separability of data. Hence, they were discarded.



(SVM)  Polynomial

Effect of changing d (order of polynomial).

Using a polynomial kernel was considered, but this was found to be prohibitively expensive in 
terms of computational time required.



Re
su
lts

Algorithm Precision Recall

SVM 
Polynomial

0.06197 0.05945

SVM Polynomial for d=4



SVM  (RBF) 
Effect of changing gamma.

Then applied SVM RBF Kernel over the downsampled data and observed the results by varying 
different values of gamma and C and ratio of training and testing data(K).

Gamma controls the shape of the "peaks" where you raise the points. A small gamma gives you 
a pointed bump in the higher dimensions (Low variance), a large gamma gives you a softer, 
broader bump(Higher variance) .



Re
su
lts

Algorithm Precision Recall

SVM RBF 0.073425 0.069846

SVM RBF



K-Fold Validation(SVM)



Softmax Regression

For each input vector we try to estimate its probability belonging to each of the 
class



Softmax Regression

Logistic Function

Parameter Vector



Softmax Regression
Probability that data point belong to label i

Cost Function to be minimized



Softmax Regression
Parameter of gradient Descent

Eta = 0.05

Threshold for each |𝛳
k
 |= 0.1

Maximum Iteration=500



Re
su
lts

Algorithm Precision Recall

Softmax 0.05489 0.05154

Softmax Regression



-Training data clustered based on source destination id feature.

- Created a dictionary with src destination id as a key and the users in the training data 

that contain that id as a feature as the value.

-For each member of the test set, we hash into the group that share the same src 

destination id feature using the created dictionary. Once we have the group of training 

users, we then create a kernel matrix (vector) using some kernel function and find, say, 

top 50 users in the group. 

-Once we have these top 50 users, we give each user a score based on the similarity, 

and for each hotel cluster sum up the scores of the users in the top 50 who booked that 

cluster. The cluster with the  highest score is recommended for the user.

Weighted User Similarity



Measuring User Similarity
-Cosine similarity performed poorly, as certain

features serve as numeric representations of 

qualitative information. (Eg. continent_id)

- Opted for Jaccard similarity which essentially 

counts the number of features shared.  



Measuring User Similarity
-We define the kernel matrix to be the vector K where the ith element of K is the result 

of the Jaccard kernel function. We then sort K and extract the top 50 users.

-Now that we have the sorted top 50 users and their similarity scores for each 

according to the kernel function, we need to assign each hotel cluster a score based on 

the number of times it appears in these top 50 users and how similar these users are.

-Lets define V to be a vector with 50 elements containing the hotel clusters (in order) 

of the top 50 users.  Score function:

Score

1

(cluster) = ∑

i

 {V

i

=cluster} exp(-i

2

/2τ2

) , τ = constant = 50.



Measuring User Similarity
The basis of the equation above is to weigh users who are really close to the test user 

more than the users who are far away, but still heavily weigh clusters that appear more 

often in those top users.



Re
su
lts Precision Recall 

Cosine Similarity 0.1557 0.1499

Jaccard Similarity 0.1685 0.1656



Conclusion and Future Scope 

-This project provides a good example for applying ML algorithms on a large dataset 

which lack obvious structure.

-Jaccard similarity here is better similarity criterion than cosine.

-Effect of various parameters on SVM kernels.

-Simple models like Naive Bayes and Logistic Regression can also give reasonable 

results.

-Gradient Boosting algorithms can also be used. 


