MILP models for RCPSP

Kushagra Chandak

6th June, 2019

Problem setting and the basic version

- Combinatorial optimization problem to schedule activities on resources that are limited in quantity. Defined by the 6-tuple (V, p, E, R, B, b).
- $S_{i}=$ Start time of i-th activity, $i=0 \ldots n+1 . S_{n+1}$ is date of the project completion time, called makespan.
- Precedence constraints: $S_{j}-S_{i} \geq p_{i} \quad \forall(i, j) \in E$
- Resource constraints: $\sum_{i \in A_{t}} b_{i k} \leq B_{k} \quad \forall k \in R, \forall t \in H$
- Feasible schedule S (with i-th component S_{i}): Compatible with both the above constraints.
- Objective: Find a schedule S of minimal makespan subject to precedence and resource constraints.
- RCPSP is NP-hard in strong sense.

RCPSP with consumption and production of resources: RCPSP/CPR

- Can also have cumulative resources: can be consumed at the start of an activity in certain amount ($c_{i p}^{-}$) and/or then produced in another amount at the end $\left(c_{i p}^{+}\right)$.
- $E S_{i}$ and $L S_{i}$ can be calculated in polynomial time during preprocessing. So $\left[E S_{i}, L S_{i}\right]$ represents the time window during which activity i can start.

Formulations for RCPSP

- Time-indexed: $x_{i t}=1$ iff activity i starts starts at time t , otherwise 0.
- Discrete time (DT) and disaggregated discrete time (DDT).
- Flow-based continous-time: $A_{0}=$ resource source and $A_{n+1}=$ resource sink. $f_{i j k}$: quantity of resource k transferred from activity i to j .
- On/off event based: An event occurs when an activity starts or ends. $z_{i e}=1$ iff activity i starts at e or is in process at e.

Discrete time (DT) formulation for RCPSP

$$
\min \sum_{t=E S_{n+1}}^{L S_{n+1}} t x_{n+1, t}
$$

subject to

$$
\begin{aligned}
& \sum_{t=E S_{j}}^{L S_{j}} t x_{j t} \geq \sum_{t=E S_{i}}^{L S_{i}} t x_{i t}+p_{i} \quad \forall(i, j) \in E \\
& \sum_{i=1}^{n} b_{i k} \sum_{\tau=\max \left(E S_{i}, t-p_{i}+1\right)}^{n} x_{i \tau} \leq B_{k} \quad \forall t \in H, \forall k \in R \\
& \sum_{t=E S_{i}}^{L S_{i}} x_{i t}=1 \quad \forall i \in A \cup\{n+1\} \\
& x_{00}=1 \\
& x_{i t}=0 \quad \forall i \in A \cup\{n+1\}, t \in H \backslash\left\{E S_{i}, L S_{i}\right\} \\
& x_{i t} \in\{0,1\} \quad \forall i \in A \cup\{n+1\}, \forall t \in\left\{E S_{i}, L S_{i}\right\}
\end{aligned}
$$

Extension of DT to RCPSP/CPR and DDT

$$
\begin{array}{ll}
s_{0 p}=C_{p}-\sum_{i=1}^{n} x_{i 0} c_{i p}^{-} & \forall p \in P \\
s_{t p}=s_{t-1, p}-\sum_{i=1}^{n} x_{i t} c_{i p}^{-}+\sum_{i=1}^{n} x_{i, t-p_{i}} c_{i p}^{+} & \forall(t, p) \in H \times P, t>0 \\
s_{t p} \geq 0 & \forall(t, p) \in H \times P
\end{array}
$$

Disaggregated Discrete Time (DDT) Formulation:

$$
\sum_{\tau=t}^{L S_{i}} x_{i \tau}+\sum_{\tau=E S_{j}}^{\min \left(L S_{j}, t+p_{i}-1\right)} x_{j \tau} \leq 1, \quad \forall(i, j) \in E, \forall t \in\left\{E S_{i}, L S_{i}\right\}
$$

- Uses flow variables to manage resources: $f_{i j k}$: quantity of resource k transferred from activity i to activity j .
- Sequantial binary variables: $x_{i j}=1$ if activity i is processed before j .
- Continous start time variables, S_{i} : Start time of activity i.
- Since A_{0} is source and A_{n+1} is sink, define $\widetilde{b}_{i k}=b_{i k}$ and $\widetilde{b}_{0 k}=\widetilde{b}_{n+1, k}=B_{k}$

Flow based continuous time (FCT) formulation

 $\min S_{n+1}$$$
\begin{array}{ll}
x_{i j}+x_{j i} \leq 1, & \forall(i, j) \in(A \cup\{0, n+1\})^{2}, i<j \\
x_{i k} \geq x_{i j}+x_{j k}-1 & \forall(i, j, k) \in(A \cup\{0, n+1\})^{3}
\end{array}
$$

$$
S_{j}-S_{i} \geq-M_{i j}+\left(p_{i}+M_{i j}\right) x_{i j} \quad \forall(i, j) \in(A \cup\{0, n+1\})^{2}
$$

$$
f_{i j k} \leq \min \left(\tilde{b}_{i k}, \tilde{b}_{j k}\right) x_{i j} \quad \forall(i, j) \in(A \cup\{0\} \times A \cup\{n+1\}), \forall k \in R
$$

$$
\sum_{j \in A \cup\{0, n+1\}} f_{i j k}=\tilde{b}_{i k} \quad \forall i \in A \cup\{0, n+1\}, \forall k \in R
$$

$$
\sum_{E A \cup\{0, n+1\}} f_{i j k}=\tilde{b}_{j k} \quad \forall i \in A \cup\{0, n+1\}, \forall k \in R
$$

$$
f_{n+1,0, k}=B_{k}
$$

$$
x_{i j}=1
$$

$$
x_{j i}=0
$$

$$
f_{i j k} \geq 0 \quad \forall(i, j) \in(A \cup\{0, n+1\})^{2}, \forall k \in R
$$

$$
\begin{array}{ll}
S_{0}=0 & \\
E S_{i} \leq S_{i} \leq L S_{i} & \forall i \in A \cup\{n+1\}^{2} \\
x_{i j} \in\{0,1\} & \forall(i, j) \in(A \cup\{0, n+1\})^{2}
\end{array}
$$

Extension of FCT to RCPSP/CPR

$$
\begin{gathered}
D_{i j p} \leq \min \left(c_{i p}^{+}, c_{j p}^{-}\right) x_{i, j} \quad \forall(i, j) \in A^{2}, p \in P \\
\sum_{i \in A \cup\{0\}} D_{i j p}=c_{j p}^{-} \quad \forall j \in A \cup\{n+1\}, p \in P \\
\sum_{j \in A \cup\{n+1\}} D_{i j p}=c_{i p}^{+} \quad \forall i \in A \cup\{0\}, p \in P
\end{gathered}
$$

- RCPSP/CPR formulation with variables indexed by events which occur when an activity starts or ends.
- Decision variables $z_{i e}$, continous variables t_{e} and $C_{\max }$
- For non-renewable resources: $s_{e p}=$ quantity of resource p at event $\mathrm{e}, p_{\text {iep }}=$ quantity of p produced by activity i at event e , $u_{i e p}=$ quantity of p consumed by i at e .

Events Variables

On/off event based formulation (OOE)

$\min C_{\text {max }}$

subject to

$$
\begin{gathered}
\sum_{e \in \mathcal{E}} z_{i e} \geq 1 \\
C_{\max } \geq t_{e}+\left(z_{i e}-z_{i(e-1)}\right) p_{i} \quad \forall e \in \mathcal{E}, \forall i \in A \\
t_{0}=0 \\
t_{e+1} \geq t_{e} \\
t_{f} \geq t_{e}+\left(\left(z_{i e}-z_{i, e-1}\right)-\left(z_{i f}-z_{i, f-1}\right)-1\right) p_{i} \quad \forall(e, f, i) \in \mathcal{E}^{2} \times A, f>e \\
\sum_{e^{\prime}=0}^{e-1} z_{i e^{\prime}} \leq e\left(1-\left(z_{i e}-z_{i(e-1)}\right)\right) \\
\left.\sum_{e^{\prime}=0}^{n-1} z_{i e^{\prime}} \leq(n-e)\left(1+\left(z_{i e}-z_{i(e-1)}\right)\right)\right) \\
\forall i \neq A, \quad \forall e \neq 0, \quad \forall e \neq 0 \in \mathcal{E}
\end{gathered}
$$

$$
\begin{gathered}
z_{i e}+\sum_{e^{\prime}=0}^{e} z_{j e^{\prime}} \leq 1+\left(1-z_{i e}\right) e \quad \forall e \in \mathcal{E}, \forall(i, j) \in E \\
\sum_{i=0}^{n-1} b_{i k} z_{i e} \leq B_{k} \\
p_{i e p} \geq 0 \quad \forall(e, i, p) \in \mathcal{E} \times A \times P \\
p_{i e p} \geq c_{i p}^{+}\left(z_{i, e-1}-z_{i, e}\right) \quad \forall(e, i, p) \in \mathcal{E} \times A \times P \\
p_{\text {iep }} \leq c_{i p}^{+} z_{i, e-1} \quad \forall(e, i, p) \in \mathcal{E} \times A \times P \\
p_{i e p} \leq c_{i p}^{+}\left(1-z_{i, e}\right) \quad \forall(e, i, p) \in \mathcal{E} \times A \times P \\
u_{i e p} \geq 0 \quad \forall(e, i, p) \in \mathcal{E} \times A \times P \\
u_{i e p} \geq c_{i p}^{-}\left(z_{i, e}-z_{i, e-1}\right) \quad \forall(e, i, p) \in \mathcal{E} \times A \times P \\
u_{i e p} \leq c_{i p}^{-} z_{i e} \quad \forall(e, i, p) \in \mathcal{E} \times A \times P
\end{gathered}
$$

$$
u_{i e p} \leq c_{i p}^{-}\left(1-z_{i, e-1}\right) \quad \forall(e, i, p) \in \mathcal{E} \times A \times P
$$

$$
\begin{gathered}
s_{e p}=s_{e-1, p}+\sum_{i \in A} p_{i e p}-\sum_{i \in A} u_{i e p} \quad \forall(e, p) \in \mathcal{E} \times P, e>0 \\
s_{0 p}=C_{p}-\sum_{i \in A} u_{i 0 p}
\end{gathered}
$$

OOE_Prec

- From the set of possible events for an activity, remove all the first events during which an activity cannot be in process because of its predecessors. Similarly, for successors.
- $z_{i e}=0, \quad i \in A, e \in\{0, \ldots,|A(i)|\} \cup\{n-|D(i)|+1, \ldots, n\}$
- Eliminating decision variables before setting up the OOE formulation gives us OOE_Prec formulation.

