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Motivation

v

(Deep) RL disregards logical structure present in many domains.
Knowledge from human experts can also be leveraged.

Such knowledge can be encoded as propositional rules which can be
used to warm start the learning.

To bypass early random exploration and expedite learning.

Related to IL and human-in-the-loop learning: usually require large
labeled dataset.

High level if-then checks are usually possible from a human.
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Introduction: Propositional Logic Nets

> ProLoNets: Represent domain knowledge as propositional rules and
encode them in a NN.

P Directly translates human expertise to RL agent's policy and begins
learning immediately, sidestepping the IL and labeling phase.

» Use decision tree policies from humans to directly initialize a NN.

> Leverages readily available domain knowledge (from humans) while
still retaining the ability to learn and improve over time using PG
updates.

» Can also be used by untrained humas to provide the initial decision
tree based policy.
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ProLoNet Workflow Example
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Figure 1: Humans interact with a Ul of state-checks and actions to construct a
decision tree policy that is then used to directly initialize a ProLoNet architecture
and parameters. The ProLoNet can then begin RL in the given domain,
outgrowing its original specification.
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ProLoNet Initialization

» To intelligently initialize a ProLoNet, a human first provides a policy
in the form of some hierarchical set of decisions (decision diagram).
» The human decisions are then translated into a set of weights
w, € W and ¢, € C.
» Each w, determines which input feature(s) to consider and ¢, is used
as a threshold for the weighted features.
» Each decision node, D, in the network is represented as
D, = ola(w] X — cy)].
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Figure 2: A traditional decision tree and a ProLoNet. Decision nodes become
linear layers, leaves become action weights, and the final output is a sum of the
leaves weighted by path probabilities.
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ProLoNet Initialization

Algorithm 1 Intelligent Initialization

1: Input: Expert Propositional Rules 14
2: Input: Input Size /g, Output Size Og
3: W,C,L={}

4: forr € R, do

5:  if r is a state check then

6: s = feature index in r

7: w=0Is , W [S] =1

8: ¢ = comparison value in

9: W=Wuw,C=CUc

10: endif

11:  if r is an action then
12: a = action index in r
13: 1=09s,1[a] =1
14: L=LuUl

15:  endif

16: end for

17: Return: W, C, L
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Example: Cart pole

> Knowledge solicited from a human: "If the cart's x_position is right of
center, move left; otherwise, move right,” and that the user indicates
x_position is the first input feature of four and that the center is at 0.

» Initialize the primary node Dy with wy = [1,0,0,0] and ¢g = 0,
following lines 5-8 in Alg. 1.

> Following lines 11-13, we create a new leaf Io = [1,0] (Move Left)
and a new leaf i = [0, 1] (Move Right).

> Finally, we set the paths Z(lp) = Do and Z(l;) = —Dy. The resulting
probability distribution over the agent’s actions is a softmax over
(Dolo + (1 — Do)h).
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Inference

» D,: Likelihood of that condition being true. Similarly, 1 — D,:
likelihood of being false.

» The network then multiplies out the probabilities for different paths
to all leaf nodes.

> Every leaf I'€ L contains a path z € Z, a set of decision nodes which
should be true or false in order to reach / as well as prior set of
weights for each action a € 3. E.g., in figure 2, zz = Dy x D, and
Z3 = (1 — Dl) * D3.

> The likelihood of each action a in leaf Jj is determined by multiplying
the probability of reaching leaf /; by the prior weight of the outputs
within leaf /;.

» Outputs of leaves are summed and passed through a softmax function
to provide the final output distribution.
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Example

» Consider an example cartpole state X = [2,1,0, 3] passed to the
ProLoNet from the previous example.

» For Dy, the network arrives at o([1,0,0,0] % [2,1,0,3] — 0) = 0.88,
meaning mostly true.

» This probability propagates to the two leaf nodes, making the
network output [0.88,0.12].
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Dynamic Growth and Experiments

» Dynamic growth of ProLoNets to learn complex policies: Maintain 2
copies of the actor: Shallower and Deeper.

» Shallower: Unaltered, initialized version. Deeper: Leaf transformed
into a randomly initialized decision node with 2 randomly initialized
leaves. Complex policy but added uncertainty.

» Shallower network generates actions; off-policy update after each
episode; Entropy of leaves of both the networks are compared for
deciding to augment the deeper network.

» Experiments: Cartpole, Lunar Lander, StarCraft, Wildfire Tracking.
Compared against MLP and LSTM agents of LOKI (IL based
framework) and DJINN (learned decision tree).
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Results
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Summary

» Encode human and domain knowledge into a NN, representing the
knowledge as propositional rules (decision trees).

» Human knowledge can warm start RL and we can skip the initial
random exploration and learn in environments that are too complex
for randomly initialized agents.

» ProlLoNets beat IL+RL on traditional architectures.

» Superior policies even if we solicit information from average
participants (need not be experts).
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Backup

Algorithm 3 PROLONET Forward Pass

Input: Input Data X, PROLONET P
ford, € D e P do

o =ola(uy, Ty X — cn))
end for
Aoyt = Output Actions
for ; € L do

Pathto [; = Z(L)

z=1

foro; € Z(L) do

if o; should be TRUE € Z(L) then

zZ=2z%0;
else
z=zx%(1—0;)
end if
end for =
Aovr = Aour + 1+ 2
end for

—

Return: Aoy
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Backup

Algorithm 2 Dynamic Growth

1:

Input: PROLONET P,

2: Input: Deeper PROLONET F;4;

Nk W

10:
11:
12

: Input: ¢ = minimum confidence
: H(l;) = Entropy of leaf I,
cforl; e L € Pydo

Calculate H(l;)

Calculate H ({41), H(la2)

for leaves under [; in Py

if H(l;) > (H(lp1) + H(lg2) + €) then
Deepen P, at [; using l4; and [ 42
Deepen P, atly; and {42 randomly

end if

end for
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