
Encoding Human Domain Knowledge to Warm Start
Reinforcement Learning

Kushagra Chandak

Paper by: Andrew Silva, Matthew Gombolay

19th Oct, 2020

1 / 14



Motivation

I (Deep) RL disregards logical structure present in many domains.

I Knowledge from human experts can also be leveraged.

I Such knowledge can be encoded as propositional rules which can be
used to warm start the learning.

I To bypass early random exploration and expedite learning.

I Related to IL and human-in-the-loop learning: usually require large
labeled dataset.

I High level if-then checks are usually possible from a human.

2 / 14



Introduction: Propositional Logic Nets

I ProLoNets: Represent domain knowledge as propositional rules and
encode them in a NN.

I Directly translates human expertise to RL agent’s policy and begins
learning immediately, sidestepping the IL and labeling phase.

I Use decision tree policies from humans to directly initialize a NN.

I Leverages readily available domain knowledge (from humans) while
still retaining the ability to learn and improve over time using PG
updates.

I Can also be used by untrained humas to provide the initial decision
tree based policy.

3 / 14



ProLoNet Workflow Example

Figure 1: Humans interact with a UI of state-checks and actions to construct a
decision tree policy that is then used to directly initialize a ProLoNet architecture
and parameters. The ProLoNet can then begin RL in the given domain,
outgrowing its original specification.

4 / 14



ProLoNet Initialization
I To intelligently initialize a ProLoNet, a human first provides a policy

in the form of some hierarchical set of decisions (decision diagram).
I The human decisions are then translated into a set of weights

~wn ∈W and ~cn ∈ C .
I Each ~wn determines which input feature(s) to consider and ~cn is used

as a threshold for the weighted features.
I Each decision node, Dn in the network is represented as

Dn = σ[α(~wT
n
~X − cn)].

Figure 2: A traditional decision tree and a ProLoNet. Decision nodes become
linear layers, leaves become action weights, and the final output is a sum of the
leaves weighted by path probabilities.

5 / 14



ProLoNet Initialization

6 / 14



Example: Cart pole
I Knowledge solicited from a human: ”If the cart’s x position is right of

center, move left; otherwise, move right,” and that the user indicates
x position is the first input feature of four and that the center is at 0.

I Initialize the primary node D0 with ~w0 = [1, 0, 0, 0] and c0 = 0,
following lines 5-8 in Alg. 1.

I Following lines 11-13, we create a new leaf ~l0 = [1, 0] (Move Left)
and a new leaf ~l1 = [0, 1] (Move Right).

I Finally, we set the paths Z (~l0) = D0 and Z (~l1) = ¬D0. The resulting
probability distribution over the agent’s actions is a softmax over
(D0

~l0 + (1− D0)~l1).

7 / 14



Inference

I Dn: Likelihood of that condition being true. Similarly, 1− Dn:
likelihood of being false.

I The network then multiplies out the probabilities for different paths
to all leaf nodes.

I Every leaf ~l ∈ L contains a path z ∈ Z , a set of decision nodes which
should be true or false in order to reach ~l as well as prior set of
weights for each action a ∈ ~a. E.g., in figure 2, z1 = D1 ∗ D2 and
z3 = (1− D1) ∗ D3.

I The likelihood of each action a in leaf ~li is determined by multiplying
the probability of reaching leaf ~li by the prior weight of the outputs
within leaf ~li .

I Outputs of leaves are summed and passed through a softmax function
to provide the final output distribution.

8 / 14



Example

I Consider an example cartpole state X = [2, 1, 0, 3] passed to the
ProLoNet from the previous example.

I For D0, the network arrives at σ([1, 0, 0, 0] ∗ [2, 1, 0, 3]− 0) = 0.88,
meaning mostly true.

I This probability propagates to the two leaf nodes, making the
network output [0.88, 0.12].

9 / 14



Dynamic Growth and Experiments

I Dynamic growth of ProLoNets to learn complex policies: Maintain 2
copies of the actor: Shallower and Deeper.

I Shallower: Unaltered, initialized version. Deeper: Leaf transformed
into a randomly initialized decision node with 2 randomly initialized
leaves. Complex policy but added uncertainty.

I Shallower network generates actions; off-policy update after each
episode; Entropy of leaves of both the networks are compared for
deciding to augment the deeper network.

I Experiments: Cartpole, Lunar Lander, StarCraft, Wildfire Tracking.
Compared against MLP and LSTM agents of LOKI (IL based
framework) and DJINN (learned decision tree).

10 / 14



Results

11 / 14



Summary

I Encode human and domain knowledge into a NN, representing the
knowledge as propositional rules (decision trees).

I Human knowledge can warm start RL and we can skip the initial
random exploration and learn in environments that are too complex
for randomly initialized agents.

I ProLoNets beat IL+RL on traditional architectures.

I Superior policies even if we solicit information from average
participants (need not be experts).

12 / 14



Backup

13 / 14



Backup

14 / 14


