PSDDs

Kushagra Chandak

15th May, 2020

Introduction to PSDDs

- Circuit (DAG) representation of discrete joint probability distributions over binary variables. (Complete and canonical)
- Used when learning with domain constraints.
 - $\blacktriangleright \text{ Data} + \text{constraints} \xrightarrow{\text{Learn}} \text{Model}$
 - Learn a statistical model/distribution that assigns zero probability to instantiations (data) that violate the constraints.
- Useful when the probability space is structured.
 - Permutations, rankings, simple paths, other combinatorial objects.

Structured Probability Spaces

Courses:

- Logic (L)
- Knowledge Representation (K)
- Probability (P)
- Artificial Intelligence (A)

Prior Knowledge

- Must take at least one of Probability or Logic.
- Probability is a prerequisite for AI.
- The prerequisites for KR is either AI or Logic.

Data

Structured Probability Spaces

	l	red	ctu	stru	uns	
		А	Р	K	L	
		0	0	0	0	
	(1	0	0	0	
 Must 	•	0	1	0	0	
Prob		1	1	0	0	
 Prob 	•	0	0	1	0	
The	•	1	0	1	0	
eithe		0	1	1	0	
_		1	1	1	0	
		0	0	0	1	
		1	0	0	1	
7 out /	-	0	1	0	1	
/ out o		1	1	0	1	
a		0	0	1	1	
		1	0	1	1	
		0	1	1	1	
		1	1	1	1	

structured

L	К	Р	А
			1
0	0	1	0
0	0	1	1
	1		1
0	1	1	1
1	0	0	0
1			1
1	0	1	0
1	0	1	1
1	1	0	0
1	1		1
1	1	1	0
1	1	1	1

Structured Probability Spaces

Space easily encoded in logical constraints Unstructured probability space: $184+16,777,032 = 2^{24}$

Underlying circuit of PSDD: SDD

Underlying circuit of PSDD: SDD

- Domain constraints (base) represented by SDD. Determined by a vtree: full binary tree with leaves corresponding to the variables.
- A decision ((p₁ ∧ s₁) ∨ ... ∨ (p_n ∧ s_n)) or a terminal (⊤ or ⊥) node. (p_i, s_i) is called an element. A decision node *respects* a vtree node.
- Vtree basically describes the structure of the SDD and what variables will form leaves.
- Primes of a decision node are consistent, mutually exclusive and exhaustive.
- Structure that induces infinitely many probability distributions. Parameterize SDD \rightarrow PSDD.

OBDDs are SDDs

Source: Adnan Darwiche, INFORMS

SDDs: Basing Decisions on Sentences

Boolean functions. Generalization of OBDDs in two ways:

- Characterstic of OBDDs: a variable order (linear). Characterstic of SDDs: a vtree (tree). SDD with a right linear vtree: OBDD.
- Decision nodes of SDD: may not be binary. Branch over sentences.
- SDDs maintain key properties of OBDDs (canonicity and polytime apply): Due to XY partition.
- ▶ **XY partition:** Write $f(\mathbf{X}, \mathbf{Y})$ as $h_1(\mathbf{X})g_1(\mathbf{Y}) + \ldots + h_n(\mathbf{X})g_n(\mathbf{Y})$, where h_i s form a partition (mutually exclusive and exhaustive; no h_i false). $\{(h_1, g_1), \ldots, (h_n, g_n)\}$: h_i : primes, g_i : subs.
- ▶ For OBDDs, where X = {X}, XY partition is called Shannon decomposition.

More on XY partition and SDDs

- SDDs are compressed if no two subs are equal. If equal subs, say g1 = g2, we can compress as {(h₁ + h₂, g₁), ..., (h_n, g_n)}. Every f(X, Y) has a unique compressed XY partition.
- Constructing SDD from Boolean function: Given a Boolean function, for a fixed vtree, the variables are partitioned (acc. to vtree) and we have a unique compressed XY partition which gives the root node of SDD. Recursively partition primes and subs using the vtree.
- SDDs more succinct than OBDDs: if there's an exponential sized OBDD for a variable order, dissecting it gives linear SDD.
- Search of OBDDs: searching a variable order space (permutations). Search of SDDs: searching in vtree space (trees).

Properties of SDD: Decomposibility

Properties of SDD: Determinism

PSDD

Input: *L*, *K*, *P*, *A* $Pr(L,K,P,A) = 0.3 \times 1.0 \times 0.8 \times 0.4 \times 0.25 = 0.024$

Syntax and Semantics of PSDD

- PSDDs are based on normalized SDDs. Node n associated to vtree node v
 - n = terminal node, then v is a leaf node containing variable of n.
 - n = decision node, then primes and subs will be in left and right child of v.
 - n = root SDD node, v = root vtree node.

Syntax:

- For each decision node (p₁, s₁), ... (p_k, s_k) and prime p_i, a positive parameter θ_i is supplied such that θ₁ + ... + θ_k = 1 and θ_i = 0 iff s_i = ⊥.
- For each terminal node ⊤, a positive paramter θ is supplied such that 0 < θ < 1.</p>

More Definitions

PSDD local (node) distribution: Pr_n over variables of vtree v

• If n = terminal node and v has variable X, then

If n = decision node (p₁, s₁, θ₁), ..., (p_k, s_k, θ_k) and v has left variables
 X and right variables Y, then

$$\Pr_{n}(\mathbf{xy}) = \Pr_{p_{i}}(\mathbf{x}).\Pr_{s_{i}}(\mathbf{y}).\theta_{i}$$

for *i* where $\mathbf{x} \models p_{i}$. E.g. $n = (\neg P, \neg A)(P, \bot)$
$$\frac{\frac{\mathbf{x} - \mathbf{y} \mid P_{r_{n}}(\mathbf{x}) - P_{r_{n}}(\mathbf{y})}{\frac{P}{P} - A} + \frac{1}{1} \frac{0.25}{0.05} \frac{0.4}{0.1} \frac{0.3}{0.3}}{\frac{-P}{-A} + 1} \frac{1}{1} \frac{0.25}{0.6} \frac{0.4}{0.0}}{\frac{0.3}{0.6}}$$

• Parameter Semantics: $\theta_i = \Pr_n(p_i)$

Relationship between local and global distributions

- Context: Boolean formula that captures all variable instantiations under which the decision diagram will branch to a node.
 - ▶ (p₁, s₁),..., (p_k, s_k): Elements on some path from SDD root, r, to node n (p_k or s_k).
 - ▶ $p_1 \land \ldots \land p_k$: sub-context for *n* and is feasible iff $s_i \neq \bot$. (To reach node *n*, all the primes on a path to *n* must be satisfied.)
 - Context: Disjunction (OR) of all sub-contexts and feasible iff some sub-context is feasible.
 - E.g.: Node normalized for v = 5 have contexts $\neg L \land K, L, \neg L \land \neg K$
 - Properties:
 - A node is implied by its context and underlying SDD.
 - Contexts are mutually exclusive and exhaustive for nodes normalized for the same vtree node.
 - Sub-contexts of a node are mutually exclusive.
 - A context/sub-context is feasible if it has a strictly positive probability.

Relationship between local and global distributions

- ► Global iterpretation to node (local) distribution: γ_n = feasible context/sub-context, then $\Pr_n(.) = \Pr_r(.|\gamma_n)$.
- Global interpretation to parameters:
 - $n = \text{terminal node, then } \theta = \Pr_r(X|\gamma_n)$
 - $n = \text{decision node, then } \theta_i = \Pr_r(p_i|\gamma_n)$
 - Intuitively, θ_i is the probability of prime p_i given that the decision of node n has been implied.
- PSDD as decision diagram: From top-down perspective, a decision node represents a choice between its primes (sentences). Generalizes decision trees/BDDs, which only branch to a single variable.

Interpretation of PSDD Parameters

PSDD Independence

- BayesNet: Independences conditioned on variables. E.g.: A and L are ind. given P. K and P are ind. given AL.
- PSDD: Indpendences conditioned on Boolean sentences (contexts):
 - Independence I: Probability of a prime is ind. of a sub-context once the context is known. (Can replace γ_n with β_n)

$$\Pr_r(p_i|\gamma_n,\beta_n) = \Pr_r(p_i|\gamma_n) = \Pr_r(p_i|\beta_n) = \theta_i$$

Independence II: For vtree node ν, variables inside ν are ind. of those outside ν given γ_ν.
 E.g.: for ν = 5, using context L, variables PA and LK are ind. given L

Reasoning with PSDDs

- ► Calculate $Pr_r(\mathbf{e})$ and $Pr_r(X|\mathbf{e})$. Runtime: Linear in PSDD size.
- $\mathsf{Pr}_n(\mathbf{e}_v) = \sum_{i=1}^k \mathsf{Pr}_{p_i}(\mathbf{e}_i) \cdot \mathsf{Pr}_{s_i}(\mathbf{e}_r) \cdot \theta_i \text{ (bottom-up)}$
- ► $\Pr_r(X, e_{\bar{v}}) = \sum_{i=1}^k \Pr_{n_i}(X) . \Pr_r(\gamma_{n_i}, \mathbf{e}_{\bar{v}})$ $\Pr_r(X, e_{\bar{v}}) = \Pr_r(X, e)$ if $\neg X$ is not satisfied by \mathbf{e} , otherwise $\Pr_r(X, e) = 0$.

To compute Pr_r(γ_n, e_{v̄}): probability of a sub-context = multiplication of parameters. context probability = summation of sub-context probabilities (since they are mutually exclusive).