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Introduction to PSDDs

I Circuit (DAG) representation of discrete joint probability distributions
over binary variables. (Complete and canonical)

I Used when learning with domain constraints.

I Data + constraints
Learn−−−→ Model

I Learn a statistical model/distribution that assigns zero probability to
instantiations (data) that violate the constraints.

I Useful when the probability space is structured.
I Permutations, rankings, simple paths, other combinatorial objects.
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Structured Probability Spaces

Source: Adnan Darwiche, Representation learning workshop, Simons Institute
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Underlying circuit of PSDD: SDD
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Underlying circuit of PSDD: SDD

I Domain constraints (base) represented by SDD. Determined by a
vtree: full binary tree with leaves corresponding to the variables.

I A decision ((p1 ∧ s1) ∨ . . . ∨ (pn ∧ sn)) or a terminal (> or ⊥) node.
(pi , si ) is called an element. A decision node respects a vtree node.

I Vtree basically describes the structure of the SDD and what variables
will form leaves.

I Primes of a decision node are consistent, mutually exclusive and
exhaustive.

I Structure that induces infinitely many probability distributions.
Parameterize SDD → PSDD.
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OBDDs are SDDs

Source: Adnan Darwiche, INFORMS
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SDDs: Basing Decisions on Sentences

I Boolean functions. Generalization of OBDDs in two ways:
I Characterstic of OBDDs: a variable order (linear). Characterstic of

SDDs: a vtree (tree). SDD with a right linear vtree: OBDD.
I Decision nodes of SDD: may not be binary. Branch over sentences.

I SDDs maintain key properties of OBDDs (canonicity and polytime
apply): Due to XY partition.

I XY partition: Write f (X,Y) as h1(X)g1(Y) + . . .+ hn(X)gn(Y),
where hi s form a partition (mutually exclusive and exhaustive; no hi
false). {(h1, g1), . . . , (hn, gn)}: hi : primes, gi : subs.

I For OBDDs, where X = {X}, XY partition is called Shannon
decomposition.
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More on XY partition and SDDs

I SDDs are compressed if no two subs are equal. If equal subs, say
g1 = g2, we can compress as {(h1 + h2, g1), . . . , (hn, gn)}. Every
f (X,Y) has a unique compressed XY partition.

I Constructing SDD from Boolean function: Given a Boolean function,
for a fixed vtree, the variables are partitioned (acc. to vtree) and we
have a unique compressed XY partition which gives the root node of
SDD. Recursively partition primes and subs using the vtree.

I SDDs more succinct than OBDDs: if there’s an exponential sized
OBDD for a variable order, dissecting it gives linear SDD.

I Search of OBDDs: searching a variable order space (permutations).
Search of SDDs: searching in vtree space (trees).
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Properties of SDD: Decomposibility

Source: Adnan Darwiche, Representation learning workshop, Simons Institute
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Properties of SDD: Determinism

Source: Adnan Darwiche, Representation learning workshop, Simons Institute
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PSDD

Source: Adnan Darwiche, Representation learning workshop, Simons Institute
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Syntax and Semantics of PSDD

I PSDDs are based on normalized SDDs. Node n associated to vtree
node v
I n = terminal node, then v is a leaf node containing variable of n.
I n = decision node, then primes and subs will be in left and right child

of v .
I n = root SDD node, v = root vtree node.

I Syntax:
I For each decision node (p1, s1), . . . (pk , sk) and prime pi , a positive

parameter θi is supplied such that θ1 + . . .+ θk = 1 and θi = 0 iff
si = ⊥.

I For each terminal node >, a positive paramter θ is supplied such that
0 < θ < 1.
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More Definitions

I PSDD local (node) distribution: Prn over variables of vtree v
I If n = terminal node and v has variable X , then

I If n = decision node (p1, s1, θ1), . . . , (pk , sk , θk) and v has left variables
X and right variables Y, then

Prn(xy) = Prpi (x).Prsi (y).θi

for i where x |= pi . E.g. n = (¬P,¬A)(P,⊥)

I Parameter Semantics: θi = Prn(pi )
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Relationship between local and global distributions

I Context: Boolean formula that captures all variable instantiations
under which the decision diagram will branch to a node.
I (p1, s1), . . . , (pk , sk): Elements on some path from SDD root, r , to

node n (pk or sk).
I p1 ∧ . . . ∧ pk : sub-context for n and is feasible iff si 6= ⊥. (To reach

node n, all the primes on a path to n must be satisfied.)
I Context: Disjunction (OR) of all sub-contexts and feasible iff some

sub-context is feasible.
I E.g.: Node normalized for v = 5 have contexts ¬L ∧ K , L,¬L ∧ ¬K
I Properties:

I A node is implied by its context and underlying SDD.
I Contexts are mutually exclusive and exhaustive for nodes normalized

for the same vtree node.
I Sub-contexts of a node are mutually exclusive.
I A context/sub-context is feasible if it has a strictly positive probability.
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Relationship between local and global distributions

I Global iterpretation to node (local) distribution: γn = feasible
context/sub-context, then Prn(.) = Prr (.|γn).

I Global interpretation to parameters:
I n = terminal node, then θ = Prr (X |γn)
I n = decision node, then θi = Prr (pi |γn)
I Intuitively, θi is the probability of prime pi given that the decision of

node n has been implied.

I PSDD as decision diagram: From top-down perspective, a decision
node represents a choice between its primes (sentences). Generalizes
decision trees/BDDs, which only branch to a single variable.
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Interpretation of PSDD Parameters

Source: Adnan Darwiche, Representation learning workshop, Simons Institute
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PSDD Independence

I BayesNet: Independences conditioned on variables. E.g.: A and L are
ind. given P. K and P are ind. given AL.

I PSDD: Indpendences conditioned on Boolean sentences (contexts):
I Independence I: Probability of a prime is ind. of a sub-context once

the context is known. (Can replace γn with βn)

Prr (pi |γn, βn) = Prr (pi |γn) = Prr (pi |βn) = θi

I Independence II: For vtree node v, variables inside v are ind. of those
outside v given γv .
E.g.: for v = 5, using context L, variables PA and LK are ind. given L
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Reasoning with PSDDs

I Calculate Prr (e) and Prr (X |e). Runtime: Linear in PSDD size.

I Prn(ev ) =
∑k

i=1 Prpi (el).Prsi (er ).θi (bottom-up)

I Prr (X , ev̄ ) =
∑k

i=1 Prni (X ).Prr (γni , ev̄ )
Prr (X , ev̄ ) = Prr (X , e) if ¬X is not satisfied by e, otherwise
Prr (X , e) = 0.

I To compute Prr (γn, ev̄ ):
probability of a sub-context = multiplication of parameters.
context probability = summation of sub-context probabilities (since
they are mutually exclusive).
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